Lecture 19: fsck, Journaling
601.418/618 Operating Systems

David Hovemeyer

April 20, 2026

Agenda

» Write buffering, filesystem consistency
> fsck, crash recovery
» Journaling

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

Review: File /O Path (Reads)

Block in cache I 11
-

File system uses buffer cache
to speed up 1/0

read () from file

» Check if block is in cache

» If so, return block to user [1 in figure]

» If not, read from disk, insert into
cache, return to user [2]

o
>

Main memory

(buffer cache)

Block not in cache

Leave copy in cache

Review: File /O Path (Writes)

Buffer in memory I Tl

 — |
write() to file o
» Write is buffered in memory Main memory
(“write behind") [1] (buffer cache)
» Sometime later, OS decides
to write to disk [2]

» Periodic flush or f Il . .
erlodic Tlush or fsyne ca Later write to disk |»

Why delay writes?

» Implications for performance
» Implications for reliability

The Consistent Update Problem

Goal:

> Atomically update file system from one consistent state to another
» What do we mean by consistent state?

Challenge:

> An update may require modifying several sectors, despite that the disk only
provides atomic write of one sector at a time

Example: File Creation of /a.txt

Initial State
Memory
Disk 01000 | 01000 /
inode block inode array data blocks

map map

Example: File Creation of /a.txt

Read to in-memory cache

Memory

Disk

01000 | 01000

/

inode block
map map

inode array

data blocks

Example: File Creation of /a.txt
Modify metadata and blocks

1 L

Memory
Dirty blocks, memory state and disk state are inconsistent: must write to disk

Disk 01000 | 01000 /

inode block

inode array data blocks
map map

Crash?

Disk: atomically write one sector

» Atomic: if crash, a sector is either completely written, or none of this sector is
written

An FS operation may modify multiple sectors

Crash — FS partially updated

Possible Crash Scenarios

File creation dirties three blocks

» inode bitmap (B)
» inode for new file (I)
> parent directory data block (D)

Old and new contents of the blocks:

Old New

B = 01000 B’ = 01010
| = free I" = allocated, initialized
D={} D' = {<'atxt’, 4>}

Also: a block could consist of multiple sectors! (For simplicity, we'll assume one sector
per block for now.)

Possible Crash Scenarios

Crash scenarios: any subset can be written

» BID

> B ID
» BI'D
> BID

» B'I'D
> B' I D
> BI'D
> B I'D’

The General Problem

Writes: Have to update disk with N writes

» Disk does only a single write atomically
Crashes: System may crash at arbitrary point

» Bad case: In the middle of an update sequence
Desire: To update on-disk structures atomically

» Either all should happen or none

Example: Bitmap First
Write Ordering: Bitmap (B), Inode (I), Data (D)
» But CRASH after B has reached disk, before | or D (scenario B' | D)

Result?

]

Disk 01010 /

Example: Inode First
Write Ordering: Inode (1), Bitmap (B), Data (D)
» But CRASH after | has reached disk, before B or D (scenario B I' D)

Result?

[]

Disk 01000 /

Example: Inode First
Write Ordering: Inode (1), Bitmap (B), Data (D)
» But CRASH after | AND B have reached disk, before D (scenario B' I' D)

Result?

[]

Disk 01010 /

Example: Inode First
Write Ordering: Inode (1), Bitmap (B), Data (D)
» But CRASH after | AND B have reached disk, before D (scenario B' I' D)
Result?

» What if data block is a new block for the new file (i.e., create file with data)?

B

Disk 01010 /

Example: Data First

Write Ordering: Data (D) , Bitmap (B), Inode (1)
» CRASH after D has reached disk, before | or B (scenario B | D')

Result?

Memory

<., 0>
<., #>
<abtd’, #4>

i

Disk

01000

Example: Data First
Write Ordering: Data (D) , Bitmap (B), Inode (1)
» CRASH after D has reached disk, before | or B (scenario B | D')
Result?

» What if data block is a new block for the new file (i.e., create file with data)?

‘Hello, 318’
Memory D

Disk 01000 /

Traditional Solution: fsck

fsck: “file system checker”
When system boots:

> Make multiple passes over file system, looking for inconsistencies
» e.g., inode pointers and bitmaps, directory entries and inode reference counts
» Try to fix automatically

fsck Example 1

inode
link_count=1

block

(number 123)

data bitmap
1
001100110

for block 123

fsck Example 2

Dir Entry

inode >
link_count =1

Dir Entry

fsck Example 3

Directory entry should

s -1 /
total 150
drwxr—-xr—x

drwxr—xr—x.
drwxr—-xr—x.
dr-xr—-xr—x.
dr-xr—-xr—x.

exist, but doesn't

401

18432 Dec
4096 Nov
4096 Aug
4096 Nov
12288 Nov
16384 Aug

31

P WWeEWw

inode

link count =1

77

1969
09:42
14:21
09:41
09:41
10:57

How to fix?

afs/

bin/

boot/

lib/

1ib64/
lost+found/

/-

fsck Example 4

inode

link_ count=1 Block
— (number 123)

inode 2227 How to fix?
link_count =1

fsck Example 4.a

inode

valid .
link_count =1 Block
(number 123)
o inode 2722 How to fix?
invalid

link_count =1

fsck Example 4.b

. inode
vall a
link count=1 Block
— (number 123) .
3 | Copy
inode
valid

link_count =1 \

Traditional Solution: fsck

fsck: "file system checker”
When system boots:

> Make multiple passes over file system, looking for inconsistencies
» Try to fix automatically
» Example: B’ I D, BI'D
» Or punt to admin
» Check lost+found, manually put the missing-link files to the correct place

Traditional Solution: fsck

Problem:

» Cannot fix all crash scenarios
» Can B' | D’ be fixed?
» Performance
» Sometimes takes hours to run
» Checking a 600GB disk takes ~70 minutes
» Does fsck have to run upon every reboot?

» Not well-defined consistency

Another Solution: Journaling

Idea: Write “intent” down to disk before updating file system

> Called “Write Ahead Logging” or “journaling”
» Originated from database community

When crash occurs, look through log to see what was going on

> Use contents of log to fix file system structures
» Crash before “intent” is written — no-op
» Crash after “intent” is written — redo op

» The process is called “recovery”

Case Study: Linux Ext3

Write real block contents of the update to log

» Four totally ordered steps:
1. Commit dirty blocks to journal as one transaction (TxBegin, |, B, D blocks)
2. Write commit record (TxEnd)
3. Copy dirty blocks to real file system (checkpointing)
4. Reclaim the journal space for the transaction

Step 1: Write Blocks to Journal

Memory

Disk

<., #2>
<. #>
<atxt, #>

01000

01000

journal

B
id=]]

01010 | |

Step 2: Write Commit Record

Memory

Disk

<., #2>
<. #>
<atxt, #>

01000

01000

journal

B
id=]]

01010 | |

TxE
id=1|

Step 3: Copy Dirty Blocks to Real FS

Memory

Disk

<., #2>
<. #>
<atxt, #>

01010

01000

journal

B
id=]]

01010 | |

TxE
id=1|

Step 4: Reclaim Journal Space

Memory

Disk

<., P>
<.' #>
<atxt, #>

01000

01000

journal

What If There Is A Crash?

Recovery: Go through log and “redo” operations that have been successfully committed
to log

What if ...

> TxBegin but not TxEnd in log?
» TxBegin through TxEnd are in log, but D has not reached the journal?

 —

ve i1 | Blval |22 e

journal

» How could this happen?
» Why don’t we merge step 2 and step 17

» Tx in log, I, B, D have been checkpointed, but Tx is not freed from log?

Summary of Journaling Write Orders

Journal writes < FS writes

» Otherwise, crash — FS broken, but no record in journal to patch it up
FS writes < Journal clear

» Otherwise, crash — FS broken, but record in journal is already cleared
Journal writes < commit record write < FS writes

» Otherwise, crash — record appears committed, but contains garbage

Ext3 Journaling Modes

Journaling has cost
P one write = two disk writes, two seeks
Several journaling modes balance consistency and performance
Data journaling: journal all writes, including file data
» Problem: expensive to journal data
Metadata journaling: journal only metadata

» Used by most FS (IBM JFS, SGI XFS, NTFS)
» Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal metadata

» Default mode for ext3
» Problem: old file may contain new data

Summary

The consistent update problem
» Example of file creation and different crash scenarios
Two approaches to crash consistency

> fsck: slow, not well-defined consistency
» Journaling: well-defined consistency, different modes

Other approach

» Soft updates (advanced OS topics)

Next Time

virtualization, hypervisors

