Lecture 18: Log Structured Filesystem
601.418/618 Operating Systems

David Hovemeyer

April 15, 2026



Agenda

» Problem with writes

» Log Structured Filesystem
» Segments
» Data Structures
» Cleaning

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.


https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

File Systems Examples

BSD Fast File System (FFS)

» What were the problems with the original Unix FS?
» How did FFS solve these problems?

Log-Structured File System (LFS)

» What was the motivation of LFS?
» How did LFS work?



LFS: Log-structured File System

An influential work designed by Mendel Rosenblum (VMWare co-founder) and John
Ousterhout

» A classic example of system designs driven by technology trends Motivation
» Faster CPUs: |/O becomes more and more of a bottleneck

improvement Processor speed: 2 x/18mo

Disk access time: 7% /yr

. year
> More memory: file cache is effective for reads
» Implication: writes compose most of disk traffic



Motivation

Problems with previous FS

» Perform many small writes
» Good performance on large, sequential writes, but many writes are still small, random

» Synchronous operation to avoid data loss
» Depends upon knowledge of disk geometry (Fast File System)



LFS Idea

Insight: treat disk like a tape drive

» Best performance from disk for sequential access
» What is Fast File System’s insight about disk?

File system buffers writes in main memory until “enough” data

» How much is enough?
» Enough to get good sequential bandwidth from disk (MB)
» Unit called a “segment”



Write Data to a Sequential Log

Write buffered data to new segment on disk in a sequential log

» Transfer all updates into a series of sequential writes

» Do not overwrite old data on disk
» i.e., old copies left behind

> Write both data and metadata in one operation



Write in LFS

Applications write  write  write
N _| -~
File System e
buffer:
write

Absorb many small writes into one buffer write!



Write in LFS

Applications

File System

buffer:-

disk: -




Write in LFS

Applications

File System

buffer:-




Write in LFS

Applications

File System

buffer:-




Write in LFS

Applications

File System

buffer:

disk:

NN\ /S

segments




Write in LFS

Applications

File System

buffer:-

disk: -

Why do we buffer the write?



Write in LFS

Applications Write WTte write
File System N
buffer:-
write




Write in LFS

Applications writ\e Wr\1'te write
]

File System
buffer:

L

disk:

Why not directly write to the log on disk sequentially?

» Sequential write alone is not enough
» Disk is constantly rotating!
» Must issue a large number of contiguous writes



Pros And Cons

Pros

> Always large sequential writes — good performance

> No knowledge of disk geometry
» Assume sequential better than random

Potential problems

» How do you find data to read?
» What happens to metadata during write?
» What happens when you fill up the disk?



Read in LFS

Same basic structures as Unix

» Directories, inodes, indirect blocks, data blocks

P> Reading data block implies finding the file's inode
» Unix FS: inodes in a fixed region (array) on disk
» LFS: inodes spread around on disk

Solution: inode map (imap) indicates where each inode is stored

» Can keep cached copy in memory
P inode map written to log with everything else
» Periodically written to known checkpoint location on disk for crash recovery



Attempt 1: Data Structures for LFS

What data structures from FFS can LFS remove?

» allocation structs: data + inode bitmaps (why?)
What type of structure is much more complicated?

» Inodes are no longer at fixed offset!
» Use current offset on disk instead of table index for name
» Note: when inode updated, inode number changes! (why?)



Attempt 1: Data Structures for LFS

Directory Entry
/mydir /mydir

<'a.txt’, 5> <a.txt’, 3000>
<'foo.c’, 23> <'foo.c’, 3200>
<barjava m—) <barjava’,

43> 4000>

Previously, Now,
each dir entry is each direntry is
<name, inode #> <name, disk offset>

Would this attempt work?



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

disk: Jip; |Dir||9 | D|D’

t
root inode |
root directory entries

file inode

file data

How to update inode 9 to point to new D' ?



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

12 |Dir||9 | D|D’

Can LFS update inode 9 to point to new D'?

» NO! This would be a random write. ..



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

12 |Dir | 19 | D |D' |I9'|Dir’ ||2'

old new

Must update all structures in sequential order to log




Attempt 1: Problem w/ Using Offset

12 |Dir||9 | D | D’ |I9’|Dir’ ||2'

Problem:

» For every data update, must propagate updates all the way up directory tree to root
Why?

» When we copy & modify the inode, its location (disk offset) changes
Solution:

» Keep inode numbers constant; don't base name on disk offset



Data Structures for LFS (attempt 2)

What data structures from FFS can LFS remove?
» allocation structs: data + inode bitmaps
What type of struct is much more complicated?

» Inodes are no longer at fixed offset

> U FF ik i | of tableindexf

> Keep inode number in dir constant

» Use imap structure to map inode number — most recent inode location on disk

FFS found inodes with math. How now?

» imap



Where to keep imap?

table of millions of

entries (4 pytes each) TP inode number =>inode location on disk

disk: EuEe |so |s1 |52 |ss

NN\ /7

segments

Where can imap be stored? Dilemma:

1. imap too large to keep in memory
2. don't want to perform random writes for imap

Solution: Write imap in segments

» Keep pointers to pieces of imap in memory



Solution: imap in segments

memory: gltfc;‘; map

///l\

Solution:

» Write imap in segments
> Keep pointers to pieces of imap in memory
P> Keep recently accessed imap cached in memory



Example Write

disk:

Solution:

» Write imap in segments

data

inode imap

> Keep pointers to pieces of imap in memory
P> Keep recently accessed imap cached in memory




Disk Cleaning

When disk runs low on free space

» Run a disk cleaning process
» Compacts live information to contiguous blocks of disk

Problem: long-lived data repeatedly copied over time

» Solution: partition disk into segments
» Group older files into same segment

LFS reclaims segments (not individual inodes and data blocks)

» Want future overwrites to be to sequential areas
P Tricky, since segments are usually partly valid



Cleaning: Copy & Compact Segments

60% 10% 95% 35%

disk segments: [BE=) | USED | USED | USEDI FREE I FREE ’



Cleaning: Copy & Compact Segments

60% 10% 95% 35%

disk segments: [BE=) | USED | USED | USEDI FREE I FREE ’



Cleaning: Copy & Compact Segments

60% 10% 95% 35%

disk segments: [BE=) | USED | USED | USEDI FREE I FREE ’

compact 2 segments to one

«  When move data blocks, copy new inode to point to it
* When move inode, update imap to point to it



Cleaning: Copy & Compact Segments

10% 95% 95%

disk segments: [l | USED | USEDl FREE I USED| FREE ’

release the two input segments



Next Time

fsck, journaled filesystems



