
Lecture 18: Log Structured Filesystem
601.418/618 Operating Systems

David Hovemeyer

April 15, 2026



Agenda

▶ Problem with writes
▶ Log Structured Filesystem

▶ Segments
▶ Data Structures
▶ Cleaning

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


File Systems Examples

BSD Fast File System (FFS)

▶ What were the problems with the original Unix FS?
▶ How did FFS solve these problems?

Log-Structured File System (LFS)

▶ What was the motivation of LFS?
▶ How did LFS work?



LFS: Log-structured File System

An influential work designed by Mendel Rosenblum (VMWare co-founder) and John
Ousterhout

▶ A classic example of system designs driven by technology trends Motivation
▶ Faster CPUs: I/O becomes more and more of a bottleneck

improvement

▶ More memory: file cache is effective for reads
▶ Implication: writes compose most of disk traffic



Motivation

Problems with previous FS

▶ Perform many small writes
▶ Good performance on large, sequential writes, but many writes are still small, random

▶ Synchronous operation to avoid data loss
▶ Depends upon knowledge of disk geometry (Fast File System)



LFS Idea

Insight: treat disk like a tape drive

▶ Best performance from disk for sequential access
▶ What is Fast File System’s insight about disk?

File system buffers writes in main memory until “enough” data

▶ How much is enough?
▶ Enough to get good sequential bandwidth from disk (MB)
▶ Unit called a “segment”



Write Data to a Sequential Log

Write buffered data to new segment on disk in a sequential log

▶ Transfer all updates into a series of sequential writes
▶ Do not overwrite old data on disk

▶ i.e., old copies left behind
▶ Write both data and metadata in one operation



Write in LFS

buffer:

disk:

File System

Applications writewritewrite

write

Absorb many small writes into one buffer write!



Write in LFS

buffer:

disk:

File System

Applications



Write in LFS

buffer:

disk:

File System

Applications



Write in LFS

buffer:

disk:

buffer:

disk:

File System

Applications



Write in LFS

S1S0 S3S2

segments

buffer:

disk:

File System

Applications



Write in LFS

buffer:

disk:

File System

Applications

Why do we buffer the write?



Write in LFS

buffer:

disk:

File System

Applications writewritewrite

write



Write in LFS

buffer:

disk:

File System

Applications writewritewrite

Why not directly write to the log on disk sequentially?

▶ Sequential write alone is not enough
▶ Disk is constantly rotating!
▶ Must issue a large number of contiguous writes



Pros And Cons

Pros

▶ Always large sequential writes → good performance
▶ No knowledge of disk geometry

▶ Assume sequential better than random

Potential problems

▶ How do you find data to read?
▶ What happens to metadata during write?
▶ What happens when you fill up the disk?



Read in LFS

Same basic structures as Unix

▶ Directories, inodes, indirect blocks, data blocks
▶ Reading data block implies finding the file’s inode

▶ Unix FS: inodes in a fixed region (array) on disk
▶ LFS: inodes spread around on disk

Solution: inode map (imap) indicates where each inode is stored

▶ Can keep cached copy in memory
▶ inode map written to log with everything else
▶ Periodically written to known checkpoint location on disk for crash recovery



Attempt 1: Data Structures for LFS

S1S0 S3S2disk:

What data structures from FFS can LFS remove?

▶ allocation structs: data + inode bitmaps (why?)

What type of structure is much more complicated?

▶ Inodes are no longer at fixed offset!
▶ Use current offset on disk instead of table index for name
▶ Note: when inode updated, inode number changes! (why?)



Attempt 1: Data Structures for LFS
Directory Entry

<‘a.txt’, 5>
<‘foo.c’, 23>
<‘bar.java’, 

43>
…

/mydir

Previously, 
each dir entry is 
<name, inode #>

<‘a.txt’, 3000>
<‘foo.c’, 3200>

<‘bar.java’, 
4000>

…

/mydir

Now, 
each dir entry is 
<name, disk offset>

Would this attempt work?



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

D’I2 Dir I9 D

root inode

file inode

file data

root directory entries

disk:

How to update inode 9 to point to new D’ ?



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

D’I2 Dir I9 D

Can LFS update inode 9 to point to new D’?

▶ NO! This would be a random write. . .



Attempt 1: Overwrite Data in LFS

Overwrite data in /file.txt:

I2’Dir’I9 ’D’I2 Dir I9 D

old new
Must update all structures in sequential order to log



Attempt 1: Problem w/ Using Offset

I2’Dir’I9 ’D’I2 Dir I9 D

Problem:

▶ For every data update, must propagate updates all the way up directory tree to root

Why?

▶ When we copy & modify the inode, its location (disk offset) changes

Solution:

▶ Keep inode numbers constant; don’t base name on disk offset



Data Structures for LFS (attempt 2)

What data structures from FFS can LFS remove?

▶ allocation structs: data + inode bitmaps

What type of struct is much more complicated?

▶ Inodes are no longer at fixed offset
▶ Use current offset on disk instead of table index for name
▶ Keep inode number in dir constant
▶ Use imap structure to map inode number → most recent inode location on disk

FFS found inodes with math. How now?

▶ imap



Where to keep imap?

imap S1S0disk: S3S2

table of millions of
entries (4 bytes each) imap: inode number => inode location on disk

segments

Where can imap be stored? Dilemma:

1. imap too large to keep in memory
2. don’t want to perform random writes for imap

Solution: Write imap in segments

▶ Keep pointers to pieces of imap in memory



Solution: imap in segments

S1S0disk: S3S2

ptrs to imap 
pieces

memory:

Solution:

▶ Write imap in segments
▶ Keep pointers to pieces of imap in memory
▶ Keep recently accessed imap cached in memory



Example Write

imapinodedata…disk:

Solution:

▶ Write imap in segments
▶ Keep pointers to pieces of imap in memory
▶ Keep recently accessed imap cached in memory



Disk Cleaning

When disk runs low on free space

▶ Run a disk cleaning process
▶ Compacts live information to contiguous blocks of disk

Problem: long-lived data repeatedly copied over time

▶ Solution: partition disk into segments
▶ Group older files into same segment

LFS reclaims segments (not individual inodes and data blocks)

▶ Want future overwrites to be to sequential areas
▶ Tricky, since segments are usually partly valid



Cleaning: Copy & Compact Segments

FREEFREEUSEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%



Cleaning: Copy & Compact Segments

FREEFREEUSEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%



Cleaning: Copy & Compact Segments

FREEFREEUSEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

compact 2 segments to one

• When move data blocks, copy new inode to point to it
• When move inode, update imap to point to it 



Cleaning: Copy & Compact Segments

FREEUSEDUSEDFREEdisk segments: FREEUSED

10% 95% 95%

release the two input segments



Next Time

fsck, journaled filesystems


