Lecture 17: Unix Fast Filesystem
601.418/618 Operating Systems

David Hovemeyer

April 13, 2026

Agenda

» Unix FS performance problems, FFS solutions
» Small block size
» Free space management
» Locality

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

File Systems Examples

BSD Fast File System (FFS)

» What were the problems with the original Unix FS?
» How did FFS solve these problems?

Log-Structured File system (LFS) — next lecture

» What was the motivation of LFS?
» How did LFS work?

Original Unix FS
From Bell Labs by Ken Thompson

Simple and elegant:

Unix disk layout

Data Blocks (512 bytes)
"

Components

» Data blocks

» Inodes (directories represented as files)

> Free list

» Superblock. (specifies number of blks in FS, counts of max # of files, pointer to
head of free list)

Problem: slow

» Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Why So Slow?

Problem 1: blocks too small (512 bytes)

> File index too large
» Require more indirect blocks
» Transfer rate low (get one block at time)

Problem 2: unorganized freelist

» Consecutive file blocks not close together
» Pay seek cost for even sequential access

> Aging: becomes fragmented over time
Problem 3: poor locality

» inodes far from data blocks
» inodes for directory not close together

» poor enumeration performance: e.g., “1s", “grep foo *.c"

FFS: Fast File System

Designed by a Berkeley research group for the BSD UNIX
» A classic file systems paper to read: McKusick et. al.l
Approach:

P> measure a state of the art systems

» identify and understand the fundamental problems
» The original FS treats disks like random-access memory!
P get an idea and build a better systems

Idea: design FS structures and allocation polices to be "disk aware”

Next: how FFS fixes the performance problems (to a degree)

Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, Robert S. Fabry, A Fast File System for
UNIX

https://dsf.berkeley.edu/cs262/FFS.pdf

Problem 1: Blocks Too Small

Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?

100 —l ~ Space Wasted m—a File Bandwidth

80+

60+

Measurement:

Percent (%)

40t

20+

592B 1024B 2048B 4096B 1MB
Block Size

P> Use idea from malloc: split unused portion

Solution: Fragments

BSD FFS:

» Has large block size (4096B or 8192B)
> Allow large blocks to be chopped into small ones called “fragments”
» Ensure fragments only used for little files or ends of files

file A file B
» Fragment size specified at the time that the file system is created
» Limit number of fragments per block to 2, 4, or 8

Pros

» High transfer speed for larger files
P> Low wasted space for small files or ends of files

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

file, size 5KB file, size 2KB

Fragment Example

write (£d1, “A”); // append A tofirstfile Block size: 4096 B
Fragment size: 1024 B

file, size 6K B file, size2KB

Fragment Example

write (£d1, “A”); // append A tofirstfile

write (£d1, “A”);

file, size 7KB

file, size 2KB

AAAA B

A

A

Block size: 4096 B
Fragment size: 1024 B

Not allowed to use fragments across multiple blocks!

W hat to do instead?

Fragment Example

write (£d1, “A”); // append A tofirstfile
write (£d1, “A”);

file, size 7KB file, size2KB

JAVAVAVAY

copy old fragments to new block
new data use remaining fragments

Block size: 4096 B
Fragment size: 1024 B

Fragment Example

write (£d1, “A”); // append A tofirstfile
write (£d1, “A”);
write (fd1, “A”);

file, size 8KB

AAAA

file, size 2KB

Block size: 4096 B
Fragment size: 1024 B

Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

> I
Measurement:

D « New FS: 17.5% of disk bandwidth
> « Few weeks old: 3% of disk bandwidth

VANANA)

O
O

Initial performance good Get worse over time

Fixing the Unorganized Freelist

Periodical compact/defragment disk

» Cons: locks up disk bandwidth during operation
Keep adjacent free blocks together on freelist

» Cons: costly to maintain

FFS: bitmap of free fragments

» Each bit indicates whether fragment is free Bits in map

Fragment numbers

> E.g., 1010101111111000001111111000101100 | Block numbers

XXXX XX00 OOXX 0000
0-3 47 8-11 12-15
0 1 2 3

» Easier to find contiguous blocks
(all aligned fragments 0 — block is free)
» Small, so usually keep entire thing in memory
» Time to find free blocks increases if fewer free blocks

Using a Bitmap

Usually keep entire bitmap in memory:
» 4G disk / 4K byte blocks. How big is map?
Allocate block close to block x?

» Check for blocks near bmap [x/32]
> If disk almost empty, will likely find one near
» As disk becomes full, search becomes more expensive and less effective

Trade space for time (search time, file access time)

bit
. Data Blocks (512 bytes)

super

Problem 3: Poor Locality

fast

inodes Data Blocks (512 bytes)

whole disk

How to keep inode close to data block?

Problem 3: Poor Locality

slow
g b inodes Data Blocks (512 bytes)
2 [map
0 N

|]
whole disk

How to keep inode close to data block?

Problem 3: Poor Locality

Example bad layout:
inode

| 0
Spijafr] g gy mojofojofojofofo!
0 7 8 15

3 2 1
pfojojojojojolomgolofojojofofo]o]
16 23 24 31

How to keep inode close to data block?

Problem 3: Poor Locality

slower
g | bit | .
Data Blocks (512 bytes)
0 N
|)
whole disk

How to keep inode close to data block?

Problem 3: Poor Locality

slowest
g | bit | .
Data Blocks (512 bytes)
0 N
L J
whole disk

How to keep inode close to data block?

Cylinders, Tracks, & Sectors

track t e spindle
2 < 4
| I «— arm assembly
sector s I :
|
3 -
i I
I o
| | .
cylinder ¢ — I read-write
! | head
| |
|
|

rotation

FFS Solution: Cylinder Group

Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1

Cylinder group 2 \

Key: can access any block in a cylinder without performing a seek. Next fastest place is
adjacent cylinder.

P> Tries to put everything related in same cylinder group
» Tries to put everything not related in different group

Clustering in FFS

Tries to put sequential blocks in adjacent sectors

» (Access one block, probably access next)

RS A

filea file b

Tries to keep inode in same cylinder as file data:

» (If you look at inode, most likely will look at data too)

Tries to keep all inodes in a dir in same cylinder group

> Access one name, frequently access many, e.g., “1s -1

What Does Disk Layout Look Like Now?

mlﬁlallﬁlanﬁ

group 1 group 2 group 3
How to keep inode close to data block?

» Answer: Use groups across disks
> Strategy: allocate inodes and data blocks in same group
» Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?

> VYes, if some (but not all) fail

FFS Results

Performance improvements:

> Able to get 20-40% of disk bandwidth for large files
» 10-20x original Unix file system!

» Stable over FS lifetime

> Better small file performance (why?)

Other enhancements

» Long file names
» Parameterization
> Free space reserve (10%) that only admin can allocate blocks from

Next Time

Log Structured Filesystem (LFS)

