
Lecture 17: Unix Fast Filesystem
601.418/618 Operating Systems

David Hovemeyer

April 13, 2026

Agenda

▶ Unix FS performance problems, FFS solutions
▶ Small block size
▶ Free space management
▶ Locality

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

File Systems Examples

BSD Fast File System (FFS)

▶ What were the problems with the original Unix FS?
▶ How did FFS solve these problems?

Log-Structured File system (LFS) – next lecture

▶ What was the motivation of LFS?
▶ How did LFS work?

Original Unix FS
From Bell Labs by Ken Thompson

Simple and elegant:

Data Blocks (512 bytes)

su
p

e
r

inodes

Unix disk layout

free
list

Components

▶ Data blocks
▶ Inodes (directories represented as files)
▶ Free list
▶ Superblock. (specifies number of blks in FS, counts of max # of files, pointer to

head of free list)

Problem: slow

▶ Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Why So Slow?

Problem 1: blocks too small (512 bytes)

▶ File index too large
▶ Require more indirect blocks
▶ Transfer rate low (get one block at time)

Problem 2: unorganized freelist

▶ Consecutive file blocks not close together
▶ Pay seek cost for even sequential access

▶ Aging: becomes fragmented over time

Problem 3: poor locality

▶ inodes far from data blocks
▶ inodes for directory not close together

▶ poor enumeration performance: e.g., “ls”, “grep foo *.c”

FFS: Fast File System

Designed by a Berkeley research group for the BSD UNIX

▶ A classic file systems paper to read: McKusick et. al.1

Approach:

▶ measure a state of the art systems
▶ identify and understand the fundamental problems

▶ The original FS treats disks like random-access memory!
▶ get an idea and build a better systems

Idea: design FS structures and allocation polices to be “disk aware”

Next: how FFS fixes the performance problems (to a degree)

1Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, Robert S. Fabry, A Fast File System for
UNIX

https://dsf.berkeley.edu/cs262/FFS.pdf

Problem 1: Blocks Too Small

Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?

Measurement:

▶ Use idea from malloc: split unused portion

Solution: Fragments

BSD FFS:

▶ Has large block size (4096B or 8192B)
▶ Allow large blocks to be chopped into small ones called “fragments”
▶ Ensure fragments only used for little files or ends of files

file A file B
▶ Fragment size specified at the time that the file system is created
▶ Limit number of fragments per block to 2, 4, or 8

Pros

▶ High transfer speed for larger files
▶ Low wasted space for small files or ends of files

Fragment Example

AAAA

file, size 5KB file, size 2KB

B A B

Block size: 4096 B
Fragment size: 1024 B

Fragment Example

AAAA

file, size 6KB file, size 2KB

B A B A

Block size: 4096 B
Fragment size: 1024 B

write(fd1, “A”); / / append A to first file

Fragment Example

AAAA

file, size 7KB file, size 2KB

B A B A A

Not allowed to use fragments across multiple blocks!

What to do instead?

Block size: 4096 B
Fragment size: 1024 B

write(fd1, “A”); / / append A to first file

write(fd1, “A”);

Fragment Example

AAAA

file, size 7KB file, size 2KB

B B A A A

Block size: 4096 B
Fragment size: 1024 B

copy old fragments to new block
new data use remaining fragments

write(fd1, “A”); / / append A to first file

write(fd1, “A”);

Fragment Example

AAAA AAAA

file, size 8KB file, size 2KB

B B

Block size: 4096 B
Fragment size: 1024 B

write(fd1, “A”); / / append A to first file

write(fd1, “A”);

write(fd1, “A”);

Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

Get worse over timeInitial performance good

Measurement:
• New FS: 17.5%of disk bandwidth
• Few weeks old: 3%of disk bandwidth

Fixing the Unorganized Freelist

Periodical compact/defragment disk

▶ Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist

▶ Cons: costly to maintain

FFS: bitmap of free fragments

▶ Each bit indicates whether fragment is free
▶ E.g., 1010101111111000001111111000101100

▶ Easier to find contiguous blocks
(all aligned fragments 0 → block is free)

▶ Small, so usually keep entire thing in memory
▶ Time to find free blocks increases if fewer free blocks

Using a Bitmap

Usually keep entire bitmap in memory:

▶ 4G disk / 4K byte blocks. How big is map?

Allocate block close to block x?

▶ Check for blocks near bmap[x/32]
▶ If disk almost empty, will likely find one near
▶ As disk becomes full, search becomes more expensive and less effective

Trade space for time (search time, file access time)

Data Blocks (512 bytes)

su
p

e
r

inodes
bit

maps

Problem 3: Poor Locality

Data Blocks (512 bytes)
su

p
e

r
inodes

bit
maps

0 N

whole disk

fast

How to keep inode close to data block?

Problem 3: Poor Locality

Data Blocks (512 bytes)
su

p
e

r
inodes

bit
maps

0 N

whole disk

slow

How to keep inode close to data block?

Problem 3: Poor Locality

Example bad layout:

0 7

D D D D D D D D

8 15

D D D D D D D D

16 23

D D D D D D D D

24 31

S i d I I I I I

0

123

inode

How to keep inode close to data block?

Problem 3: Poor Locality

Data Blocks (512 bytes)
su

p
e

r
inodes

bit
maps

0 N

whole disk

slower

How to keep inode close to data block?

Problem 3: Poor Locality

Data Blocks (512 bytes)
su

p
e

r
inodes

bit
maps

0 N

whole disk

slowest

How to keep inode close to data block?

Cylinders, Tracks, & Sectors

FFS Solution: Cylinder Group

Group sets of consecutive cylinders into “cylinder groups”

Key: can access any block in a cylinder without performing a seek. Next fastest place is
adjacent cylinder.

▶ Tries to put everything related in same cylinder group
▶ Tries to put everything not related in different group

Clustering in FFS
Tries to put sequential blocks in adjacent sectors

▶ (Access one block, probably access next)

Tries to keep inode in same cylinder as file data:

▶ (If you look at inode, most likely will look at data too)

Tries to keep all inodes in a dir in same cylinder group

▶ Access one name, frequently access many, e.g., “ls -l”

What Does Disk Layout Look Like Now?

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

How to keep inode close to data block?

▶ Answer: Use groups across disks
▶ Strategy: allocate inodes and data blocks in same group
▶ Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?

▶ Yes, if some (but not all) fail

FFS Results

Performance improvements:

▶ Able to get 20-40% of disk bandwidth for large files
▶ 10-20x original Unix file system!
▶ Stable over FS lifetime
▶ Better small file performance (why?)

Other enhancements

▶ Long file names
▶ Parameterization
▶ Free space reserve (10%) that only admin can allocate blocks from

Next Time

Log Structured Filesystem (LFS)

