Lecture 15: File Systems
601.418/618 Operating Systems

David Hovemeyer

March 30, 2026

Agenda

> File system concepts
> File system operations
» Protection

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

File System Fun

File systems: a challenging OS design topic
» More papers on FSes than any other single topic
Main tasks of file system:

» Don't go away (ever)

» Associate bytes with name (files)

> Associate names with each other (directories)

» Can implement file systems on disk, over network, in memory, in non-volatile ram
(NVRAM), on tape, w/ paper.

> We'll focus on disk and generalize later

Today: files, directories

Files

File: named bytes on disk

» data with some properties
» contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?

> Next lecture's topic

» Basic idea (in Unix): a struct called an index node or inode
» Describes where on the disk the blocks for a file are placed
» Disk stores an array of inodes, inode # is the index in this array

File Types

A file can also have a type

» Understood by the file system and kernel
» Block, character, device, portal, link, named pipe, etc.

» Understood by other parts of the OS or runtime libraries
» Executable, dll, source, object, text, etc.

A file's type can be encoded in its name or contents

» In name: usually, as a “filename extension” (.com, .exe, .bat, .sh, .d11, .so,

.jpg, .png, etc.)
» In contents: magic numbers, initial characters, e.g., #! for shell scripts, etc.

Basic File Operations

Unix

Windows

create(name)

open(name, how)

read(fd, buf, len)

write(fd, buf, len)

sync(fd)

seek(fd, pos)

close(fd)

unlink(name)

sendfile(outfd, infd, offset, count)*
rename(fromname, toname)”

CreateFile(name, CREATE)
CreateFile(name, OPEN)
ReadFile(handle, ...)
WriteFile(handle, . ..)
FlushFileBuffers(handle, . ..)
SetFilePointer(handle, ...)
CloseHandle(handle, .. .)
DeleteFile(name)
CopyFile(fromname, toname)
MoveFile(fromname, toname)

* .
Linux-only

File Access Methods

FS usually provides different file access methods:

» Sequential access
» read bytes one at a time, in order
» by far the most common mode
» Random access
» random access given block/byte number
» Record access
» file is array of fixed- or variable-length records
> read/written sequentially or randomly by record #
» Indexed access
> file system contains an index to a particular field of each record in a file
» reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?

Directories

Problem: referencing files
Users remember where on disk their files are (disk sector no.)?
> E.g., like remembering your social security or bank account #
People want human digestible names
Directories serve two purposes

» For users, they provide a structured way to organize files
» For FS, they provide a convenient naming interface that allows the separation of
logical file organization from physical file placement on the disk

A Short History of Directories

Approach 1: Single directory for entire system

» Put directory at known disk location. If one user uses a name, no one else can.
» Many ancient personal computers work this way (CP/M, MSDOS 1.0)

Approach 2: Single directory for each user

» Still clumsy, and running 1s on 10,000 files is a real pain
» Seen in early time-sharing systems (CTSS, ITS)

Approach 3: Hierarchical name spaces

» Allow directory to map names to files or other dirs
» File system forms a tree (or graph, if links allowed)

Hierarchical Directory

Used since Multics (1960s)

» Unix picked up and used really nicely
/

afs bin cdr)omd%bi{tmp

awk chmod chown
Large name spaces tend to be hierarchical

P ip addresses, domain names, scoping in programming languages, APl endpoints in
web services, etc.

Directory Internals

A directory is a list of entries

» <name, location> tuple, location is typically the inode # (more next lecture)
» An inode describes where on the disk the blocks for a file are placed

Directories stored on disk just like regular files

> File type set to directory

. . .) Fil tent for ‘/’
» Users can read just like any other file / lle content for/
» Only special syscalls can write (why?) /N‘ <afs,1021>
r read afs bin cdrom dev spin tmp | <tmp,1020>
or rea <bin,1022>
» File pointed to by the location may be aiWk chrmod chown | <cdrom,4123>
. <dev,1001>
another d|r. . . <<bin 1011>
» Makes FS into hierarchical tree

Simple, plus speeding up file ops speeds up dir ops!

Path Name Translation

Let's say you want to open “/one/two/three”
What does the file system do?

» Directory entries map file names to location (inode #)

» Open directory “/": Where? Root directory is always inode #2
» Search for the entry “one”, get location of “one” (in dir entry)

» Open directory “one”, search for “two”, get location of “two”

» Open directory “two”, search for “three”, get location of “three”
» Open file “three”

Naming Magic
Bootstrapping: Where do you start looking?
» Root directory always inode #2 (0 and 1 historically reserved)
Special names:

» Root directory: “/"
» Current directory: “"
» Parent directory:

Some special names are provided by shell, not FS:

» User's home directory:
> Globbing: “foo.*" expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:

» cd name: move into (change context to) directory name
» 1s: enumerate all names in current directory (context)

Basic Directory Operations
Unix

Some operations shared for files and
directories, some are directory-only or
file-only

>

>
>
>

mkdir (name) (create dir)
create(name) (create file)
unlink(name) (del file or dir)
open(name, flags) (open file or
dir)

C library provides a higher-level
abstraction for reading directories

>
>
>
>

opendir(name)
readdir(DIR)
seekdir(DIR)
closedir(DIR)

Windows

Explicit directory operations
» CreateDirectory(name)
» RemoveDirectory(name)

Very different method for reading
directory entries

» FindFirstFile(pattern)

» FindNextFile()

Default Context: Working Directory

Cumbersome to constantly specify full path names

» In Unix, each process has a “current working directory” (cwd)
» File names not beginning with “/" are assumed to be relative to cwd; otherwise
translation happens as before

Shells track a default list of active contexts

> A “search path” for programs you run
» Given a search path A:B:C, the shell will check in A, then B, then C
» Can escape using explicit paths: “./foo”

Example of locality

Hard Links

More than one dir entry can refer to a
given file

» Hard link creates a synonym for file
(but not allowed for directory!)

» Unix stores count of pointers (“hard
links") to inode

» If one of the links is removed (e.g.,
rm), the data are still accessible
through any other link that remains

» If all links are removed, the space
occupied by the data is freed.

existing file link to create

1n foo bar
foo bar
N/

inode #31279
refcount =2

Soft Links

Soft/symbolic links = synonyms for names

» Point to a file/dir name, but object
can be deleted from underneath it (or
never exist).

» Unix implements like directories:
inode has special “symlink” bit set
and contains name of link target

» When the file system encounters a
soft link it automatically translates it
(if possible).

barz —

1ln too bar
foo bar « .
inode #31279
refcount =2

-

~
~

“bar” L/
refcount =1

1n -s bar barz

File Sharing

File sharing has been around since timesharing

» Easy to do on a single machine
» PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done
» Basis for communication and synchronization
Two key issues when sharing files

> Semantics of concurrent access
» What happens when one process reads while another writes?
» What happens when two processes open a file for writing?
» What are we going to use to coordinate?

» Protection

Protection

File systems implement a protection system

» Who can access a file
> How they can access it

More generally. ..
» Objects are "what”, subjects are “who", actions are “how"

A protection system dictates whether a given action performed by a given subject on a
given object should be allowed

» You can read and/or write your files, but others cannot
» You can read "“/etc/motd”, but you cannot write it

Representing Protection

Access Control Lists (ACL) Capabilities
For each object, maintain a list of subjects For each subject, maintain a list of objects
and their permitted actions and their permitted actions
Objects
/‘\‘
Jone \ | ftwo | /three
Alice (rw |- rw
Subjects
o Bob fw_ - |r Capability
<:§Barlie A /r rw ~::x""'
— \\ // ——

" ACL

ACLs and Capabilities

Approaches differ only in how the table is represented
Capabilities are easier to transfer

» They are like keys, can handoff, does not depend on subject
In practice, ACLs are easier to manage

» Object-centric, easy to grant, revoke
> To revoke capabilities, have to keep track of all subjects that have the capability —
a challenging problem

ACLs have a problem when objects are heavily shared

» The ACLs become very large
» Use groups (e.g., Unix)

Unix File Protection

What approach does Unix use in the FS?

> Answer: both
ACL: Unix file permissions
Capability: file descriptors
How are they used together?

» Conversion through open()
system call

Converted to
capability ACL check, expensive

int fd = open("file.txt", O WRONLY);
if (fd == -1)
exit (-1);

for (int 1 = 0; i < 100; i++)
write (fd, buf + i * 4, 4);

Use capability from then on

Summary

Files
» Operations, access methods
Directories
» Operations, using directories to do path searches
Sharing
Protection

> ACLs vs. capabilities

Next Time

File Systems Implementation

