
Lecture 15: File Systems
601.418/618 Operating Systems

David Hovemeyer

March 30, 2026



Agenda

▶ File system concepts
▶ File system operations
▶ Protection

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


File System Fun

File systems: a challenging OS design topic

▶ More papers on FSes than any other single topic

Main tasks of file system:

▶ Don’t go away (ever)
▶ Associate bytes with name (files)
▶ Associate names with each other (directories)
▶ Can implement file systems on disk, over network, in memory, in non-volatile ram

(NVRAM), on tape, w/ paper.
▶ We’ll focus on disk and generalize later

Today: files, directories



Files

File: named bytes on disk

▶ data with some properties
▶ contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?

▶ Next lecture’s topic
▶ Basic idea (in Unix): a struct called an index node or inode

▶ Describes where on the disk the blocks for a file are placed
▶ Disk stores an array of inodes, inode # is the index in this array



File Types

A file can also have a type

▶ Understood by the file system and kernel
▶ Block, character, device, portal, link, named pipe, etc.

▶ Understood by other parts of the OS or runtime libraries
▶ Executable, dll, source, object, text, etc.

A file’s type can be encoded in its name or contents

▶ In name: usually, as a “filename extension” (.com, .exe, .bat, .sh, .dll, .so,
.jpg, .png, etc.)

▶ In contents: magic numbers, initial characters, e.g., #! for shell scripts, etc.



Basic File Operations

Unix Windows

create(name) CreateFile(name, CREATE)
open(name, how) CreateFile(name, OPEN)
read(fd, buf, len) ReadFile(handle, . . . )
write(fd, buf, len) WriteFile(handle, . . . )
sync(fd) FlushFileBuffers(handle, . . . )
seek(fd, pos) SetFilePointer(handle, . . . )
close(fd) CloseHandle(handle, . . . )
unlink(name) DeleteFile(name)
sendfile(outfd, infd, offset, count)* CopyFile(fromname, toname)
rename(fromname, toname)* MoveFile(fromname, toname)

* Linux-only



File Access Methods

FS usually provides different file access methods:

▶ Sequential access
▶ read bytes one at a time, in order
▶ by far the most common mode

▶ Random access
▶ random access given block/byte number

▶ Record access
▶ file is array of fixed- or variable-length records
▶ read/written sequentially or randomly by record #

▶ Indexed access
▶ file system contains an index to a particular field of each record in a file
▶ reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?



Directories

Problem: referencing files

Users remember where on disk their files are (disk sector no.)?

▶ E.g., like remembering your social security or bank account #

People want human digestible names

Directories serve two purposes

▶ For users, they provide a structured way to organize files
▶ For FS, they provide a convenient naming interface that allows the separation of

logical file organization from physical file placement on the disk



A Short History of Directories

Approach 1: Single directory for entire system

▶ Put directory at known disk location. If one user uses a name, no one else can.
▶ Many ancient personal computers work this way (CP/M, MSDOS 1.0)

Approach 2: Single directory for each user

▶ Still clumsy, and running ls on 10,000 files is a real pain
▶ Seen in early time-sharing systems (CTSS, ITS)

Approach 3: Hierarchical name spaces

▶ Allow directory to map names to files or other dirs
▶ File system forms a tree (or graph, if links allowed)



Hierarchical Directory

Used since Multics (1960s)

▶ Unix picked up and used really nicely

afs cdrombin dev sbin tmp

awk chmod chown

/

Large name spaces tend to be hierarchical

▶ ip addresses, domain names, scoping in programming languages, API endpoints in
web services, etc.



Directory Internals

A directory is a list of entries

▶ <name, location> tuple, location is typically the inode # (more next lecture)
▶ An inode describes where on the disk the blocks for a file are placed

Directories stored on disk just like regular files

▶ File type set to directory
▶ Users can read just like any other file
▶ Only special syscalls can write (why?)

or read
▶ File pointed to by the location may be

another dir
▶ Makes FS into hierarchical tree

Simple, plus speeding up file ops speeds up dir ops!

afs cdrombin dev sbin tmp

awk chmod chown

/ File content for ‘/’ 

<afs,1021>
<tmp,1020>
<bin,1022>
<cdrom,4123>
<dev,1001>
<sbin,1011>
…



Path Name Translation

Let’s say you want to open “/one/two/three”

What does the file system do?

▶ Directory entries map file names to location (inode #)
▶ Open directory “/”: Where? Root directory is always inode #2
▶ Search for the entry “one”, get location of “one” (in dir entry)
▶ Open directory “one”, search for “two”, get location of “two”
▶ Open directory “two”, search for “three”, get location of “three”
▶ Open file “three”



Naming Magic
Bootstrapping: Where do you start looking?

▶ Root directory always inode #2 (0 and 1 historically reserved)

Special names:

▶ Root directory: “/”
▶ Current directory: “.”
▶ Parent directory: “..”

Some special names are provided by shell, not FS:

▶ User’s home directory: “~”
▶ Globbing: “foo.*” expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:

▶ cd name: move into (change context to) directory name
▶ ls: enumerate all names in current directory (context)



Basic Directory Operations
Unix

Some operations shared for files and
directories, some are directory-only or
file-only
▶ mkdir(name) (create dir)
▶ create(name) (create file)
▶ unlink(name) (del file or dir)
▶ open(name, flags) (open file or

dir)

C library provides a higher-level
abstraction for reading directories
▶ opendir(name)
▶ readdir(DIR)
▶ seekdir(DIR)
▶ closedir(DIR)

Windows

Explicit directory operations
▶ CreateDirectory(name)
▶ RemoveDirectory(name)

Very different method for reading
directory entries
▶ FindFirstFile(pattern)
▶ FindNextFile()



Default Context: Working Directory

Cumbersome to constantly specify full path names

▶ In Unix, each process has a “current working directory” (cwd)
▶ File names not beginning with “/” are assumed to be relative to cwd; otherwise

translation happens as before

Shells track a default list of active contexts

▶ A “search path” for programs you run
▶ Given a search path A:B:C, the shell will check in A, then B, then C
▶ Can escape using explicit paths: “./foo”

Example of locality



Hard Links
More than one dir entry can refer to a
given file

▶ Hard link creates a synonym for file
(but not allowed for directory!)

▶ Unix stores count of pointers (“hard
links”) to inode

▶ If one of the links is removed (e.g.,
rm), the data are still accessible
through any other link that remains

▶ If all links are removed, the space
occupied by the data is freed.

inode 31279 #
refcount = 2

foo bar

ln foo bar

existing file link to create



Soft Links
Soft/symbolic links = synonyms for names

▶ Point to a file/dir name, but object
can be deleted from underneath it (or
never exist).

▶ Unix implements like directories:
inode has special “symlink” bit set
and contains name of link target

▶ When the file system encounters a
soft link it automatically translates it
(if possible).

inode 31279 #
refcount = 2

foo bar

ln –s bar barz

“bar”
refcount = 1barz

ln foo bar



File Sharing

File sharing has been around since timesharing

▶ Easy to do on a single machine
▶ PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done

▶ Basis for communication and synchronization

Two key issues when sharing files

▶ Semantics of concurrent access
▶ What happens when one process reads while another writes?
▶ What happens when two processes open a file for writing?
▶ What are we going to use to coordinate?

▶ Protection



Protection

File systems implement a protection system

▶ Who can access a file
▶ How they can access it

More generally. . .

▶ Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action performed by a given subject on a
given object should be allowed

▶ You can read and/or write your files, but others cannot
▶ You can read “/etc/motd”, but you cannot write it



Representing Protection

Access Control Lists (ACL)
For each object, maintain a list of subjects
and their permitted actions

Capabilities
For each subject, maintain a list of objects
and their permitted actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL

Capability



ACLs and Capabilities

Approaches differ only in how the table is represented

Capabilities are easier to transfer

▶ They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage

▶ Object-centric, easy to grant, revoke
▶ To revoke capabilities, have to keep track of all subjects that have the capability –

a challenging problem

ACLs have a problem when objects are heavily shared

▶ The ACLs become very large
▶ Use groups (e.g., Unix)



Unix File Protection
What approach does Unix use in the FS?

▶ Answer: both

ACL: Unix file permissions

Capability: file descriptors

How are they used together?

▶ Conversion through open()
system call

int fd = open("file.txt", O_WRONLY);
if (fd == -1)
exit(-1);

for (int i = 0; i < 100; i++)
write(fd, buf + i * 4, 4);

ACL check, expensive

Use capability from then on

Converted to 
capability



Summary

Files

▶ Operations, access methods

Directories

▶ Operations, using directories to do path searches

Sharing

Protection

▶ ACLs vs. capabilities



Next Time

File Systems Implementation


