
Lecture 14: I/O and Disks
601.418/618 Operating Systems

David Hovemeyer

March 25, 2026



Agenda

▶ I/O devices
▶ Device interaction

▶ Programmed I/O
▶ Interrupts
▶ DMA

▶ Hard disks and SSDs

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


Overview

We’ve covered OS abstractions for CPU and memory so far

Virtualization

Processes

Scheduling

Virtual Memory

Concurrency

Threads

Synchronization

Semaphores and Monitors

Persistence
I/O

Disks

File Systems

I/O management is another major component of OS

▶ Important aspect of computer operation
▶ I/O devices vary greatly: various methods to control them
▶ New types of devices



I/O Devices

Issues to address:

▶ How should I/O be integrated into systems?
▶ What are the general mechanisms?
▶ How can we manage them efficiently?



Structure of Input/Output (I/O) Device

CPU Memory

Graphics

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)



Structure of Input/Output (I/O) Device



Device Interaction

How does the OS communicate with an I/O device?

Command DataDevice Registers: Status
interface

OS reads/writes to these

Canonical I/O Device 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

internals



Hardware Interface Of Canonical Device

status register

▶ See the current status of the device

command register

▶ Tell the device to perform a certain task

data register

▶ Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device behavior



Hardware Interface Of Canonical Device

Typical interaction example

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command 

while (STATUS == BUSY)

; //wait until device is done with your request 



Programming a device

One approach: I/O instructions

▶ in and out instructions on x86
▶ Devices usually have registers

▶ places commands, addresses, and data there to read/write registers
▶ How to identify (address) a device?

▶ With a port location (I/O address range)



Typical Device I/O Port Locations



x86 I/O instructions

static inline uint8_t inb (uint16_t port)
{

uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void outb (uint16_t port, uint8_t data)
{

asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));
}

static inline void insw (uint16_t port, void *addr, size_t cnt)
{

asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

}



IDE Disk Driver

void IDE_ReadSector(int disk, int off,
void *buf)

{
// Select Drive
outb(0x1F6, disk == 0 ? 0xE0 : 0xF0);
IDEWait();
// Read length (1 sector = 512 B)
outb(0x1F2, 1);
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()
{

// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0);

}



Memory-mapped IO

in/out instructions slow and clunky

▶ Instruction format restricts what registers you can use
▶ Only allows 216 different port numbers

Another approach: Memory-mapped I/O

▶ Device registers available as if they were memory locations. load (to read) or store
(to write) goes to the device instead of main memory.
volatile int32_t *device_control

= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;

▶ OS must map physical to virtual addresses, ensure non-cachable



Polling

OS waits until the device is ready by repeatedly reading the status register

▶ Positive aspect is simple and working.
▶ However, it wastes CPU time just waiting for the device

▶ Switching to another ready process is better utilizing the CPU.

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO” 



Interrupts

Put the I/O request process to sleep and context switch to another When the device is
finished, wake the process by interrupt

▶ CPU and the disk are properly utilized

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt 

1 1 1 1 1

: task 11 : task 22



Polling vs. Interrupts

However, interrupts is not always the best solution

▶ If, device performs very quickly, interrupt will “slow down” the system.

If a device is fast → poll is best
If it is slow → interrupt is better

E.g., high network packet arrival rate

▶ Packets can arrive faster than OS can process them
▶ Interrupts are very expensive (context switch)
▶ Interrupt handlers have high priority
▶ In worst case, can spend 100% of time in interrupt handler and never make any

progress

Adaptive switching between interrupts and polling



One More Problem: Data Copying

CPU wastes a lot of time in copying large data from memory to a device register one
byte a time (termed programmed I/O, PIO)

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C



DMA (Direct Memory Access)

Buffer descriptor list

Idea: only use CPU to transfer control requests, not data Include list of buffer locations
in main memory

▶ Device reads list and accesses buffers through DMA



DMA (Direct Memory Access) Cont.

When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C



Direct Memory Access

Avoid programmed I/O for large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between I/O device and memory

OS writes DMA command block into memory

▶ Source and destination addresses
▶ Read or write mode
▶ Count of bytes
▶ Writes location of command block to DMA controller



Device Protocol Variants

Command DataDevice Registers: Status
interface

OS reads/writes to these

Canonical I/O Device 

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

internals

Status checks: polling vs. interrupts

Command: special instructions vs. memory-mapped I/O

Data: programmed I/O (PIO) vs. direct memory access (DMA)



Hard Disks



Hard Disks



Hard Disks



Basic Interface

Disk interface presents linear array of sectors

▶ Historically 512 Bytes
▶ Written atomically (even if there is a power failure)
▶ 4 KiB in “advanced format” disks

▶ Torn write: If an untimely power loss occurs, only a portion of a larger write may
complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping



Basic Geometry

Platter (Aluminum coated with a thin magnetic layer)

▶ A circular hard surface
▶ Data is stored persistently by inducing magnetic changes to it
▶ Each platter has 2 sides, each of which is called a surface



Basic Geometry (Cont.)

Spindle

▶ Spindle is connected to a motor that spins the platters around
▶ The rate of rotations is measured in RPM (Rotations Per Minute)

▶ Typical modern values : 7,200 RPM to 15,000 RPM.

Track

▶ Concentric circles of sectors
▶ Data is encoded on each surface in a track
▶ A single surface contains many thousands and thousands of tracks

Cylinder

▶ A stack of tracks of fixed radius
▶ Heads record and sense data along cylinders
▶ Generally only one head active at a time



Cylinders, Tracks, & Sectors



A Simple Disk Drive

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

head

ar
m

Disk head (one head per surface of the drive)

▶ The process of reading and writing is accomplished by the disk head
▶ Attached to a single disk arm, which moves across the surface



Single-track Latency

A Single Track Plus A Head

1
23

4

5

6

7
8 9

10

11

0

spindle

Rotates this way

head

ar
m

Rotational delay: Time for the desired sector to rotate

▶ Ex) Full rotational delay is R and we start at sector 6
▶ Read sector 0: Rotational delay = R/2
▶ Read sector 5: Rotational delay = R − 1 (worst case.)



Multiple Tracks
Let’s Read 12!

1
2

3

0
6
5

4

7

8

9

10

11

15

14

13

12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek to Right Track
Let’s Read 12!

1
2

3

0
6
5

4

7

8
9

10

11

15

14

13

12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek to Right Track
Let’s Read 12!

1
2

3

0
6
5 4

7

8
9

10

11

15

14

13
12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek to Right Track
Let’s Read 12!

1
2

3

0
6

5 4

7
8 9

10
11

15
14

13

12

16

17

18
19

23
22

21

20



Multiple Tracks: Wait for Rotation
Let’s Read 12!

1 2
30

6 5
47

8

9 1
0

1
1

1
5

1
4

1
3

1
2

1
6

1
7

1
8

1
9

2
3

2
2

2
1

2
0



Multiple Tracks: Wait for Rotation
Let’s Read 12!

1
2 3

0
6

5
4

78

9

10 11

15 14
13

12

16

17

18 19

23 22

21

20



Multiple Tracks: Wait for Rotation
Let’s Read 12!

1
2

3

0
6
5

4

7

8

9

10

11

15

14

13

12

16

17

18

19

23

22

21

20



Multiple Tracks: Wait for Rotation
Let’s Read 12!

1
2

3

0
6

54

7
89

10
11

15
14

1312

1617

18
19

23
22

2120



Multiple Tracks: Wait for Rotation
Let’s Read 12!

12
3 0

65
4 7

8
91
0

1
1

1
5

1
41
3

1
2

1
6

1
71
8

1
9

2
3

2
22
1

2
0



Multiple Tracks: Transfer Data
Let’s Read 12!

1
23

0

6
5

4

7

8
9

10

11

15

14

13
12

16
17

18

19

23

22

21
20



Multiple Tracks: Transfer Data
Let’s Read 12!

1
23

0
6

5
4

7 8

9

1011

1514
13

12

16

17

1819

2322

21

20



Multiple Tracks: Transfer Data
Let’s Read 12!

1
23

06
5
4

7
8

9

10
11

1514

13

12

16

17

18
19

23
22

21

20



Yay!

1
23

06
5

4

7
8

9

10
11

15
14

13

12

16

17

18

19

23

22

21

20



Multiple Tracks: Seek Time

1

2

3

4

5
6

7

8

9

10

11
0

13

14

15

16

17
18

19

20

21

22

23
12

25

26

27

28

2930
31

32

33

34

35 24

1

2
3

4

5

6

7

8
9

10

11

0

13

1415
16

17

18

19

20 21
22

23

12

25
2627

28

29

30

31
32 33

34

35

24
spindle spindle

seek

Rotates this way Rotates this way

Re
m

ai
ni

ng
 ro

ta
tio

n

Seek: Move the disk arm to the correct track

▶ Seek time: Time to move head to the track contain the desired sector.
▶ One of the most costly disk operations.



Seek, Rotate, Transfer

Acceleration → Coasting → Deceleration → Settling

▶ Acceleration: The disk arm gets moving.
▶ Coasting: The arm is moving at full speed.
▶ Deceleration: The arm slows down.
▶ Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!

▶ settling alone can take 0.5 to 2ms.
▶ entire seek often takes 4 to 10 ms.

On a 1 GHz CPU (slow by modern standards), 1 ms is 1,000,000 clock cycles!



Seek, Rotate, Transfer

Depends on rotations per minute (RPM)

▶ 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?

▶ 1/7200 RPM = 1 minute/7200 rotations = 1 second/120 rotations =
8.3 ms/rotation

Average rotation delay?

▶ 8.3 ms/2 = 4.15 ms



Seek, Rotate, Transfer

The final phase of I/O

▶ Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density

100+ MB/s is typical for maximum transfer rate

How long to transfer 512 bytes?

▶ 512 bytes × (1 s/100 MB) = 5 µs = 5 × 10−6 s



Workload

So. . .

▶ seeks are slow
▶ rotations are slow
▶ transfers are fast

What kind of workload is fastest for disks?

▶ Sequential: access sectors in order (transfer dominated)
▶ Random: access sectors arbitrarily (seek+rotation dominated)



Disk Scheduling

9

21

33

27

15

3

24 12 06 18 30

10

11
22

2334

35

25
26 13

14
1

2

28
29

16

17

4

5

31

32
19

20
7

8

Spindle

Rotates this way

Disk Scheduler decides which I/O request to schedule next



Disk Scheduling: FCFS

“First Come First Served”

▶ Process disk requests in the order they are received

Advantages

▶ Easy to implement
▶ Good fairness

Disadvantages

▶ Cannot exploit request locality
▶ Increases average latency, decreasing throughput



FCFS Example



SSTF (Shortest Seek Time First)

Order the queue of I/O request by track

Pick requests on the nearest track to complete first

▶ Also called shortest positioning time first (SPTF)

Advantages

▶ Exploits locality of disk requests
▶ Higher throughput

Disadvantages

▶ Starvation
▶ Don’t always know what request will be fastest



SSTF Example



“Elevator” Scheduling (SCAN)

Sweep across disk, servicing all requests passed

▶ Like SSTF, but next seek must be in same direction
▶ Switch directions only if no further requests

Advantages

▶ Takes advantage of locality
▶ Bounded waiting

Disadvantages

▶ Cylinders in the middle get better service
▶ Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction

▶ Very commonly used algorithm in Unix



CSCAN Example



Flash Memory
Today, people increasingly using flash memory

Completely solid state (no moving parts)

▶ Remembers data by storing charge
▶ Lower power consumption and heat
▶ No mechanical seek times to worry about

Limited # overwrites possible

▶ Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
▶ Requires flash translation layer (FTL) to provide wear leveling, so repeated writes

to logical block don’t wear out physical block
▶ FTL can seriously impact performance

Limited durability

▶ Charge wears out over time
▶ Turn off device for a year, you can potentially lose data!



Next Time

Filesystems!


