Lecture 9: Deadlock
601.418/618 Operating Systems

David Hovemeyer

February 18, 2026

Agenda

» Deadlocks

» Dining philosopher’s problem

» Resource allocation graphs

» Preventing or mitigating deadlocks

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

Deadlock

Synchronization is a live gun

» We can easily shoot ourselves in the foot
P Incorrect use of synchronization can block all processes
» You have likely been intuitively avoiding this situation already

If one process tries to access a resource that a second process holds, and vice-versa, they
can never make progress

We call this situation deadlock, and we'll look at:

» Definition and conditions necessary for deadlock
» Representation of deadlock conditions
» Approaches to dealing with deadlock

Dining Philosophers Problem
Philosophers spend their lives alternating
thinking and eating

Don't interact with neighbors,
occasionally eat

» Need 2 forks to eat
» Release both when done

Can only pick up 1 fork at a time o

Philosophers in Code (1)

#define N 5 /* number of philosophers */

void philosopher(int i) /* 1: philosopher id, 0 to 4 */
{
while (true) {
think () ; /* philosopher is thinking */
take_fork(i); /* take left fork */
take_fork((i + 1) % N); /* take right fork */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i + 1) % N); /* put right fork back on the table */
¥

Philosophers in Code (2)

semaphore forks[N]; /* semaphores for each fork,
each initialized to 1 (omitted) */
void take_fork(int i)
{
forks[i] .P(); /* wait for ith fork's semaphore */
}

void put_fork(int i)
{
forks[i] .V(); /* signal ith fork's semaphore #*/

}

What is a problem with this algorithm?

How to Avoid Deadlock Here?

Multiple solutions exist
Simple one: allow at most 4 philosophers to sit simultaneously at the table

» With 5 forks for 4 philosophers, at all times one philosopher is guaranteed to be
able to pick up both forks

Another solution: define a partial order for resources (forks)

» Number the forks

» Philosopher must always pick up lower-numbered fork first and then
higher-numbered fork

> What happens if the four lowest-numbered philosophers all pick up their
lower-numbered fork?

» Disadvantage
» Not always practical, when the complete list of all resources is not known in advance

Third solution: all or none each time

Resource Ordering

%

N8

O

2

SN

SN
\)
N

II',

I&

TR

I
eSS

\\\\ﬂ

\¢

2nd Attempt at Dining Philosopher Problem

#define N 5 /* number of philosophers */
#define LEFT (i+N-1) % N /* i's left neighbor */
#define RIGHT (i+1) % N /* 4i's right neighbor */

enum State {THINKING, HUNGRY, EATING}; /* o philosopher's status */
enum State states[N]; /* keep track of each philosopher's status */
semaphore mutex = 1; /* mutual exclusion for critical section */
semaphore phis[N]; /* semaphore for each philosopher, init to 0 */

void philosopher(int i) /#* %: philosopher id, 0 to N-1 #*/
{
while (true) {

think () ; /* philosopher is thinking */
take_forks(i); /* take both forks */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks */

}

2nd Attempt at Dining Philosopher Problem

void take_forks(int i) /* i: philosopher id, 0 to N-1 */ /* i: philosopher id, 0 to N-1 */
{ void test(int i)
mutex.P(); /* enter critical section */ {
states[i] = HUNGRY; /* indicate philosopher is hungry */ if (states[i] == HUNGRY &&
test(i); /% try to acquire two forks */ states[LEFT] != EATING &&
mutex.V(); /* exit critical section */ states[RIGHT] '= EATING) {
phis[i] .PO); /* block if forks mot acquired */ /* philosopher % can eat now */
} states[i] = EATING;
void put_forks(int i) /* 4: philosopher id, O to N-1 */ /* signal © to proceed */
{ phis[i].VO;
mutex.P(); /* enter critical section */ ¥
states[i] = THINKING; /* indicate i finished eating */ }
test (LEFT) ; /* see if left neighbor can eat now */
test (RIGHT) ; /% see if right neighbor can eat now */
mutex.V(); /* exit critical section */

Notes for the 2nd Attempt Solution

What is the purpose of the states array?

» ...given that already have the semaphore array?
> A semaphore doesn't have operations for checking its value!

What if we don't use the mutex semaphore?
Why is the semaphore array for each philosopher?

» Our first attempt uses semaphore array for each fork
What if we put phis[i].P(); inside the critical section?

What if we don't call test () twice in put_forks()?

Deadlock Definition

Deadlock is a problem that can arise:

> When processes compete for access to limited resources
> When processes are incorrectly synchronized

Definition:

» Deadlock exists among a set of processes if every process is waiting for an event
that can be caused only by another process in the set.

Deadlock Example

mutex_t ml, m2;

void pl(void *ignored) {
lock(ml);
lock (m2) ;
/* critical section */
unlock(m2) ;
unlock(mi) ;

void p2(void *ignored) {
lock(m2);
lock(ml);
/* critical section */
unlock(ml) ;
unlock(m2) ;

Deadlock Example

mutex_t ml, m2;

void pl(void *ignored) {

lock(ml);
lock(m2); /#* <-————- here */
/* critical section */
unlock(m2) ;
unlock(ml);

3

void p2(void *ignored) {
lock(m2);
lock(ml); /* <————- here */
/* critical section */
unlock(ml) ;
unlock(m2) ;

Deadlock Example

Can you have deadlock w/o mutexes?

Same problem with condition variables

» Suppose resource 1 managed by ¢, resource 2 by ¢
> A has 1, waits on ¢, B has 2, waits on ¢;

Or w/ combined mutex/condition variable (tricky)

Ty

lock (a); lock (a);
lock (b); lock (b);
while (!ready) ready = true;
wait (c, b); signal (c);
unlock (b); \ unlock (b);
unlock (a); unlock (a);

T

Deadlock Example
Can you have deadlock w/o mutexes?
Same problem with condition variables

» Suppose resource 1 managed by ¢, resource 2 by ¢
> A has 1, waits on ¢, B has 2, waits on ¢;

Or w/ combined mutex/condition variable (tricky)

Lesson: dangerous to hold locks when crossing boundaries!

lock (a); internally uses lock (a);

foo (x); condition variables bar (y) ;

unlock (a); unlock (a);

Deadlocks Without Computers

o] O]
0] O]

[O] »

Real issue is resources and how required
E.g., bridge only allows traffic in one direction

» Each section of a bridge can be viewed as a resource
» If a deadlock occurs, it can be resolved if one car backs up (preempt resources and

rollback)
» Several cars may have to be backed up if a deadlock occurs

» Starvation is possible

Conditions for Deadlock

1. Mutual exclusion: At least one resource must be held in a non-sharable mode

2. Hold and wait. There must be one process holding one resource and waiting for
another resource

3. No preemption: Resources cannot be preempted (critical sections cannot be
aborted externally)

4. Circular wait: There must exist a set of processes {P1, P2, Ps,..., Py} such that P;
is waiting for P>, P, for Ps, etc.

All of 1-4 necessary for deadlock to occur
Two approaches to dealing with deadlock:

» Pro-active: prevention
> Reactive: detection + corrective action

Prevent by Eliminating One Condition

1. Mutual exclusion
» Buy more resources, split into pieces, or virtualize to make “infinite” copies
» Threads: threads have copy of registers = no lock
2. Hold and wait
> Wait on all resources at once (must know in advance)
3. No preemption
» Physical memory: virtualized with VM, can take physical page away and give to
another process!
. Circular wait
> Single lock for entire system: (problems?)
> Partial ordering of resources (next)

N

Resource Allocation Graph
View system as graph

» Processes and Resources are nodes
P> Resource Requests and Assignments are edges

Process: Q

Resource with 4 instances:
P; requesting R;: Q—>
P; holding instance of R;: QK

og
og

oo
oo

oo
oo

Example Resource Allocation Graph

Resource Allocation Graph with Deadlock
R; R,

Is This Deadlock?

Is This Deadlock?

Before: After:
R1 R1
o .
O O
Ps
R, R,
N

“ @
[] ~ °

Cycles and Deadlock

If graph has no cycles = no deadlock
If graph contains a cycle

» Definitely deadlock if only one instance per resource
> “waits-for graph” (WFG)
» Otherwise, maybe deadlock, maybe not

Prevent deadlock with partial order on resources

» E.g., always acquire mutex my before m;
» Usually design locking discipline for application this way

Dealing With Deadlock

There are four approaches for dealing with deadlock:

» Ignore it — how lucky do you feel?

» Prevention — make it impossible for deadlock to happen

» Avoidance — control allocation of resources

» Detection and Recovery — look for a cycle in dependencies

Deadlock Avoidance

Avoidance

» Provide information in advance about what resources will be needed by processes to

guarantee that deadlock will not happen
» System only grants resource requests if it knows that the process can obtain all

resources it needs in future requests
» Avoids circularities (wait dependencies)

Tough

P> Hard to determine all resources needed in advance
» Good theoretical problem, not as practical to use

Banker's Algorithm

The Banker's Algorithm is the classic approach to deadlock avoidance for resources with
multiple units

1. Assign a credit limit to each customer (process)
> Maximum credit claim must be stated in advance
2. Reject any request that leads to a dangerous state
» A dangerous state is one where a sudden request by any customer for the full credit
limit could lead to deadlock
» A recursive reduction procedure recognizes dangerous states
3. In practice, the system must keep resource usage well below capacity to maintain a
resource surplus
» Rarely used in practice due to low resource utilization

Detection and Recovery

Detection and recovery

» If we don't have deadlock prevention or avoidance, then deadlock may occur
» In this case, we need to detect deadlock and recover from it

To do this, we need two algorithms

» One to determine whether a deadlock has occurred
» Another to recover from the deadlock

Possible, but expensive (time consuming)

» Implemented in VMS
» Run detection algorithm when resource request times out VAX 11/780

Deadlock Detection

Detection

» Traverse the resource graph looking for cycles
» If a cycle is found, preempt resource (force a process to release)

Expensive
» Many processes and resources to traverse
Only invoke detection algorithm depending on

» How often or likely deadlock is
» How many processes are likely to be affected when it occurs

Deadlock Recovery

Once a deadlock is detected, we have two options. . .

1. Abort processes
» Abort all deadlocked processes
P Processes need to start over again
» Abort one process at a time until cycle is eliminated
> System needs to rerun detection after each abort
2. Preempt resources (force their release)
» Need to select process and resource to preempt
P> Need to rollback process to previous state
» Need to prevent starvation

Deadlock Summary

Deadlock occurs when processes are waiting on each other and cannot make progress
» Cycles in Resource Allocation Graph (RAG)

Deadlock requires four conditions
» Mutual exclusion, hold and wait, no resource preemption, circular wait

Four approaches to dealing with deadlock:

» Ignore it — Living life on the edge

» Prevention — Make one of the four conditions impossible

» Avoidance — Banker's Algorithm (control allocation)

» Detection and Recovery — Look for a cycle, preempt or abort

