
Lecture 9: Deadlock
601.418/618 Operating Systems

David Hovemeyer

February 18, 2026



Agenda

▶ Deadlocks
▶ Dining philosopher’s problem
▶ Resource allocation graphs
▶ Preventing or mitigating deadlocks

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


Deadlock

Synchronization is a live gun

▶ We can easily shoot ourselves in the foot
▶ Incorrect use of synchronization can block all processes
▶ You have likely been intuitively avoiding this situation already

If one process tries to access a resource that a second process holds, and vice-versa, they
can never make progress

We call this situation deadlock, and we’ll look at:

▶ Definition and conditions necessary for deadlock
▶ Representation of deadlock conditions
▶ Approaches to dealing with deadlock



Dining Philosophers Problem

Philosophers spend their lives alternating
thinking and eating

Don’t interact with neighbors,
occasionally eat

▶ Need 2 forks to eat
▶ Release both when done

Can only pick up 1 fork at a time



Philosophers in Code (1)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher id, 0 to 4 */
{

while (true) {
think(); /* philosopher is thinking */
take_fork(i); /* take left fork */
take_fork((i + 1) % N); /* take right fork */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i + 1) % N); /* put right fork back on the table */

}
}



Philosophers in Code (2)

semaphore forks[N]; /* semaphores for each fork,
each initialized to 1 (omitted) */

void take_fork(int i)
{

forks[i].P(); /* wait for ith fork's semaphore */
}

void put_fork(int i)
{

forks[i].V(); /* signal ith fork's semaphore */
}

What is a problem with this algorithm?



How to Avoid Deadlock Here?
Multiple solutions exist

Simple one: allow at most 4 philosophers to sit simultaneously at the table

▶ With 5 forks for 4 philosophers, at all times one philosopher is guaranteed to be
able to pick up both forks

Another solution: define a partial order for resources (forks)

▶ Number the forks
▶ Philosopher must always pick up lower-numbered fork first and then

higher-numbered fork
▶ What happens if the four lowest-numbered philosophers all pick up their

lower-numbered fork?
▶ Disadvantage

▶ Not always practical, when the complete list of all resources is not known in advance

Third solution: all or none each time



Resource Ordering



2nd Attempt at Dining Philosopher Problem

#define N 5 /* number of philosophers */
#define LEFT (i+N-1) % N /* i's left neighbor */
#define RIGHT (i+1) % N /* i's right neighbor */
enum State {THINKING, HUNGRY, EATING}; /* a philosopher's status */
enum State states[N]; /* keep track of each philosopher's status */
semaphore mutex = 1; /* mutual exclusion for critical section */
semaphore phis[N]; /* semaphore for each philosopher, init to 0 */

void philosopher(int i) /* i: philosopher id, 0 to N-1 */
{

while (true) {
think(); /* philosopher is thinking */
take_forks(i); /* take both forks */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks */

}
}



2nd Attempt at Dining Philosopher Problem

void take_forks(int i) /* i: philosopher id, 0 to N-1 */
{

mutex.P(); /* enter critical section */
states[i] = HUNGRY; /* indicate philosopher is hungry */
test(i); /* try to acquire two forks */
mutex.V(); /* exit critical section */
phis[i].P(); /* block if forks not acquired */

}
void put_forks(int i) /* i: philosopher id, 0 to N-1 */
{

mutex.P(); /* enter critical section */
states[i] = THINKING; /* indicate i finished eating */
test(LEFT); /* see if left neighbor can eat now */
test(RIGHT); /* see if right neighbor can eat now */
mutex.V(); /* exit critical section */

}

/* i: philosopher id, 0 to N-1 */
void test(int i)
{

if (states[i] == HUNGRY &&
states[LEFT] != EATING &&
states[RIGHT] != EATING) {

/* philosopher i can eat now */
states[i] = EATING;
/* signal i to proceed */
phis[i].V();

}
}



Notes for the 2nd Attempt Solution

What is the purpose of the states array?

▶ . . . given that already have the semaphore array?
▶ A semaphore doesn’t have operations for checking its value!

What if we don’t use the mutex semaphore?

Why is the semaphore array for each philosopher?

▶ Our first attempt uses semaphore array for each fork

What if we put phis[i].P(); inside the critical section?

What if we don’t call test() twice in put_forks()?



Deadlock Definition

Deadlock is a problem that can arise:

▶ When processes compete for access to limited resources
▶ When processes are incorrectly synchronized

Definition:

▶ Deadlock exists among a set of processes if every process is waiting for an event
that can be caused only by another process in the set.



Deadlock Example

mutex_t m1, m2;

void p1(void *ignored) {
lock(m1);
lock(m2);
/* critical section */
unlock(m2);
unlock(m1);

}

void p2(void *ignored) {
lock(m2);
lock(m1);
/* critical section */
unlock(m1);
unlock(m2);

}



Deadlock Example

mutex_t m1, m2;

void p1(void *ignored) {
lock(m1);
lock(m2); /* <----- here */
/* critical section */
unlock(m2);
unlock(m1);

}

void p2(void *ignored) {
lock(m2);
lock(m1); /* <----- here */
/* critical section */
unlock(m1);
unlock(m2);

}



Deadlock Example
Can you have deadlock w/o mutexes?

Same problem with condition variables

▶ Suppose resource 1 managed by c1, resource 2 by c2
▶ A has 1, waits on c2, B has 2, waits on c1

Or w/ combined mutex/condition variable (tricky)

T1 T2

lock (b); 
ready = true; 
signal (c);
unlock (b);

lock (a);

unlock (a); 

lock (b); 
while (!ready) 
wait (c, b); 

unlock (b); 

lock (a); 

unlock (a);



Deadlock Example
Can you have deadlock w/o mutexes?

Same problem with condition variables

▶ Suppose resource 1 managed by c1, resource 2 by c2
▶ A has 1, waits on c2, B has 2, waits on c1

Or w/ combined mutex/condition variable (tricky)

Lesson: dangerous to hold locks when crossing boundaries!

foo(x);

lock (a); 

unlock (a);

bar(y);

lock (a); 

unlock (a);

internally uses
condition variables



Deadlocks Without Computers

Real issue is resources and how required

E.g., bridge only allows traffic in one direction

▶ Each section of a bridge can be viewed as a resource
▶ If a deadlock occurs, it can be resolved if one car backs up (preempt resources and

rollback)
▶ Several cars may have to be backed up if a deadlock occurs
▶ Starvation is possible



Conditions for Deadlock

1. Mutual exclusion: At least one resource must be held in a non-sharable mode
2. Hold and wait: There must be one process holding one resource and waiting for

another resource
3. No preemption: Resources cannot be preempted (critical sections cannot be

aborted externally)
4. Circular wait: There must exist a set of processes {P1, P2, P3, . . . , Pn} such that P1

is waiting for P2, P2 for P3, etc.

All of 1–4 necessary for deadlock to occur

Two approaches to dealing with deadlock:

▶ Pro-active: prevention
▶ Reactive: detection + corrective action



Prevent by Eliminating One Condition

1. Mutual exclusion
▶ Buy more resources, split into pieces, or virtualize to make “infinite” copies
▶ Threads: threads have copy of registers = no lock

2. Hold and wait
▶ Wait on all resources at once (must know in advance)

3. No preemption
▶ Physical memory: virtualized with VM, can take physical page away and give to

another process!
4. Circular wait

▶ Single lock for entire system: (problems?)
▶ Partial ordering of resources (next)



Resource Allocation Graph
View system as graph

▶ Processes and Resources are nodes
▶ Resource Requests and Assignments are edges

Process:

Resource with 4 instances:

Pi requesting Rj :

Pi holding instance of Rj :



Example Resource Allocation Graph



Resource Allocation Graph with Deadlock



Is This Deadlock?



Is This Deadlock?
Before: After:



Cycles and Deadlock

If graph has no cycles =⇒ no deadlock

If graph contains a cycle

▶ Definitely deadlock if only one instance per resource
▶ “waits-for graph” (WFG)

▶ Otherwise, maybe deadlock, maybe not

Prevent deadlock with partial order on resources

▶ E.g., always acquire mutex m1 before m2
▶ Usually design locking discipline for application this way



Dealing With Deadlock

There are four approaches for dealing with deadlock:

▶ Ignore it – how lucky do you feel?
▶ Prevention – make it impossible for deadlock to happen
▶ Avoidance – control allocation of resources
▶ Detection and Recovery – look for a cycle in dependencies



Deadlock Avoidance

Avoidance

▶ Provide information in advance about what resources will be needed by processes to
guarantee that deadlock will not happen

▶ System only grants resource requests if it knows that the process can obtain all
resources it needs in future requests

▶ Avoids circularities (wait dependencies)

Tough

▶ Hard to determine all resources needed in advance
▶ Good theoretical problem, not as practical to use



Banker’s Algorithm

The Banker’s Algorithm is the classic approach to deadlock avoidance for resources with
multiple units

1. Assign a credit limit to each customer (process)
▶ Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state
▶ A dangerous state is one where a sudden request by any customer for the full credit

limit could lead to deadlock
▶ A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well below capacity to maintain a
resource surplus
▶ Rarely used in practice due to low resource utilization



Detection and Recovery

Detection and recovery

▶ If we don’t have deadlock prevention or avoidance, then deadlock may occur
▶ In this case, we need to detect deadlock and recover from it

To do this, we need two algorithms

▶ One to determine whether a deadlock has occurred
▶ Another to recover from the deadlock

Possible, but expensive (time consuming)

▶ Implemented in VMS
▶ Run detection algorithm when resource request times out VAX 11/780



Deadlock Detection

Detection

▶ Traverse the resource graph looking for cycles
▶ If a cycle is found, preempt resource (force a process to release)

Expensive

▶ Many processes and resources to traverse

Only invoke detection algorithm depending on

▶ How often or likely deadlock is
▶ How many processes are likely to be affected when it occurs



Deadlock Recovery

Once a deadlock is detected, we have two options. . .

1. Abort processes
▶ Abort all deadlocked processes

▶ Processes need to start over again
▶ Abort one process at a time until cycle is eliminated

▶ System needs to rerun detection after each abort
2. Preempt resources (force their release)

▶ Need to select process and resource to preempt
▶ Need to rollback process to previous state
▶ Need to prevent starvation



Deadlock Summary

Deadlock occurs when processes are waiting on each other and cannot make progress

▶ Cycles in Resource Allocation Graph (RAG)

Deadlock requires four conditions

▶ Mutual exclusion, hold and wait, no resource preemption, circular wait

Four approaches to dealing with deadlock:

▶ Ignore it – Living life on the edge
▶ Prevention – Make one of the four conditions impossible
▶ Avoidance – Banker’s Algorithm (control allocation)
▶ Detection and Recovery – Look for a cycle, preempt or abort


