
Lecture 8: Synchronization exercises
601.418/618 Operating Systems

David Hovemeyer

February 16, 2026

Agenda

▶ Readers/Writers (using semaphore)
▶ Bounded Buffer (using semaphores)
▶ Readers/Writers (as a monitor with condition variables)
▶ Bounded Buffer (as a monitor with condition variables)

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

Using semaphores

We’ve looked at a simple example for using synchronization

▶ Mutual exclusion while accessing a bank account

Now let’s use semaphores to look at more interesting examples

▶ Readers/Writers
▶ Bounded Buffers

Readers/Writers Problem

Readers/Writers Problem:

▶ An object is shared among several threads
▶ Some threads only read the object, others only write it
▶ We can allow multiple readers but only one writer

▶ Let #r be the number of readers, #w be the number of writers
▶ Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) =⇒ (#w = 0))

How can we use semaphores to implement this protocol?

Start with. . .

▶ Semaphore w_or_r – exclusive writing or reading

Readers/Writers

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

Is this correct? Are we done?

Readers/Writers

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

Readers/Writers Notes
w_or_r provides mutex between readers and writers

▶ writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1
to 0.

If a writer is writing, where will readers be waiting?

Once a writer exits, all readers can fall through

▶ Which reader gets to go first?
▶ Is it guaranteed that all readers will fall through?

If readers and writers are waiting, and a writer exits, who goes first?

Why do readers use mutex?

Why don’t writers use mutex?

What if the signal is above “if (readcount == 1)”?

Bounded Buffer
Problem: a set of buffers shared by producer and consumer threads

▶ Producer inserts resources into the buffer set
▶ Output, disk blocks, memory pages, processes, etc.

▶ Consumer removes resources from the buffer set
▶ Whatever is generated by the producer

Producer and consumer execute at different rates

▶ No serialization of one behind the other
▶ Tasks are independent (easier to think about)
▶ The buffer set allows each to run without explicit handoff

Safety:

▶ Sequence of consumed values is prefix of sequence of produced values
▶ If nc is number consumed, np number produced, and N the size of the buffer, then

0 ≤ np − nc ≤ N

Bounded Buffer (2)

0 ≤ np − nc ≤ N ⇐⇒ 0 ≤ (nc − np) + N ≤ N

Use three semaphores:

▶ empty: number of empty buffers
▶ Counting semaphore
▶ empty = (nc − np) + N

▶ full: number of full buffers
▶ Counting semaphore
▶ full = np − nc

▶ mutex: mutual exclusion to shared set of buffers
▶ Binary semaphore

Bounded Buffer (3)

producer() {
while (1) {

Produce new resource;
wait(&empty); // wait for empty buffer
wait(&mutex); // lock buffer list
Add resource to an empty buffer;
signal(&mutex); // unlock buffer list
signal(&full); // note a full buffer

}
}

consumer() {
while (1) {

wait(&full); // wait for a full buffer
wait(&mutex); // lock buffer list
Remove resource from a full buffer;
signal(&mutex); // unlock buffer list
signal(&empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex(1); // mutual exclusion to shared set of buffers
Semaphore empty(N); // count of empty buffers (all empty to start)
Semaphore full(0); // count of full buffers (none full to start)

Bounded Buffer (4)

Why do we need the mutex at all?

Where are the critical sections?

What has to hold for deadlock to occur?

▶ empty = 0 and full = 0
▶ (nc − np) + N = 0 and np − nc = 0
▶ N = 0

What happens if operations on mutex and full/empty are switched around?

▶ The pattern of signal/wait on full/empty is a common construct often called an
interlock

Readers/Writers and Bounded Buffer are classic synchronization problems

Monitor Readers and Writers

Using Mesa monitor semantics.

Will have four methods: StartRead, StartWrite, EndRead and EndWrite

Monitored data: nr (# of readers) and nw (# of writers) with monitor invariant

(nr ≥ 0) ∧ (0 ≤ nw ≤ 1) ∧ ((nr > 0) =⇒ (nw = 0))

Two conditions:

▶ canRead: nw = 0
▶ canWrite: (nr = 0) ∧ (nw = 0)

Monitor Readers and Writers

Try #1

▶ Will be safe, maybe not live: why?

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;

}

void StartWrite {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;

}
} // end monitor

Monitor Readers and Writers

Need to add signal() and broadcast()

Monitor RW {
int nr = 0, nw = 0;
Condition canRead, canWrite;

void StartRead () {
while (nw != 0) wait(canRead);
nr++;

}

void EndRead () {
nr--;
if (nr == 0) signal(canWrite);

}

void StartWrite () {
while (nr != 0 || nw != 0) wait(canWrite);
nw++;

}

void EndWrite () {
nw--;
broadcast(canRead);
signal(canWrite);

}
} // end monitor

can we put a signal here?

can we put a signal here?

Monitor Readers and Writers

Is there any priority between readers and writers?

What if you wanted to ensure that a waiting writer would have priority over new readers?

Monitor Bounded Buffer

Monitor bounded_buffer {
Resource buffer[N];
// Variables for indexing buffer
// monitor invariant involves these vars
Condition not_full; // space in buffer
Condition not_empty; // value in buffer

void put_resource (Resource R) {
while (buffer array is full)

wait(not_full);
Add R to buffer array;
signal(not_empty);

}

Resource get_resource() {
while (buffer array is empty)

wait(not_empty);
Get resource R from buffer array;
signal(not_full);
return R;

}
} // end monitor

What happens if no threads are waiting when signal is called?

Monitor Queues

Monitor bounded_buffer {

Condition not_full;
…other variables…
Condition not_empty;

void put_resource() {
…wait(not_full)…
…signal(not_empty)…

}
Resource get_resource() {
…

}
}

Waiting to enter

Waiting on condition variables

Executing inside the monitor

Next time

Deadlock (!)

