Lecture 8: Synchronization exercises
601.418/618 Operating Systems

David Hovemeyer

February 16, 2026

Agenda

» Readers/Writers (using semaphore)
» Bounded Buffer (using semaphores)
» Readers/Writers (as a monitor with condition variables)
» Bounded Buffer (as a monitor with condition variables)

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

Using semaphores

We've looked at a simple example for using synchronization
» Mutual exclusion while accessing a bank account
Now let's use semaphores to look at more interesting examples

» Readers/Writers
» Bounded Buffers

Readers/Writers Problem

Readers/Writers Problem:

» An object is shared among several threads
» Some threads only read the object, others only write it
> We can allow multiple readers but only one writer
> |Let #r be the number of readers, #w be the number of writers
> Safety: (#r > 0)A (0 <#w < 1)A((#r >0) = (#w =0))
How can we use semaphores to implement this protocol?
Start with. ..

» Semaphore w_or_r — exclusive writing or reading

Readers/Writers

Is this correct? Are we done?

// exclusive writer or
Semaphore w _or r(l);

// number of readers
int readcount = 0;

// mutual exclusion to
Semaphore mutex (1) ;

writer () |
wait (&éw_or r); //
Write;
signal (&w_or r);//

reader

readcount

lock out others

up for grabs

reader () {

wait (&mutex) ; // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait (&w_or r);// synch w/ writers

signal (&mutex) ; // unlock readcount
Read;

wait (&mutex) ; // lock readcount
readcount -= 1; // one less reader

if (readcount == 0)
signal (&w_or r); // up for grabs
signal (&mutex) ; // unlock readcount

Readers/Writers

// exclusive writer or
Semaphore w _or r(l);

// number of readers
int readcount = 0;
// mutual exclusion to

Semaphore mutex a
-
E

writer () |
wait (&éw_or r); //
Write;
signal (&w_or r);//

reader

readcount

lock out others

up for grabs

reader ()
wait (&mutex) ; // lock readcount
readcount += 1; // one more reader

if (readcount == 1)
wait (&w_or r);// synch w/ writers

signal (&mutex) ; // unlock readcount
Read;

wait (&mutex) ; // lock readcount
readcount -= 1; // one less reader

if (readcount == 0)
signal (&w_or r); // up for grabs
signal (&mutex) ; // unlock readcount

Readers/Writers Notes

w_or_r provides mutex between readers and writers

> writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1
to 0.

If a writer is writing, where will readers be waiting?
Once a writer exits, all readers can fall through

» Which reader gets to go first?
> |s it guaranteed that all readers will fall through?

If readers and writers are waiting, and a writer exits, who goes first?
Why do readers use mutex?
Why don't writers use mutex?

What if the signal is above "if (readcount == 1)"7

Bounded Buffer

Problem: a set of buffers shared by producer and consumer threads

» Producer inserts resources into the buffer set

» Qutput, disk blocks, memory pages, processes, etc.
» Consumer removes resources from the buffer set
» Whatever is generated by the producer

Producer and consumer execute at different rates

» No serialization of one behind the other
» Tasks are independent (easier to think about)
» The buffer set allows each to run without explicit handoff

Safety:

> Sequence of consumed values is prefix of sequence of produced values
» If ncis number consumed, np number produced, and N the size of the buffer, then
0<np—nc<N

Bounded Buffer (2)

0<np—nc<N <= 0<(nc—np)+N<N

Use three semaphores:

> empty: number of empty buffers
» Counting semaphore
» empty = (nc—np)+ N
» full: number of full buffers
» Counting semaphore
» full = np— nc
» mutex: mutual exclusion to shared set of buffers
» Binary semaphore

Bounded Buffer (3)

Semaphore mutex (1)
Semaphore empty (N)
Semaphore full (0)

7
7

// mutual exclusion to shared set of buffers
// count of empty buffers (all empty to start)
H // count of full buffers (none full to start)

producer () |
while (1) {

Produce new resource;
wait (&empty); // wait for empty buffer
wait (&mutex); // lock buffer list
Add resource to an empty buffer;
signal (¢mutex); // unlock buffer list
signal (&full); // note a full buffer

consumer

0 A

while (1) {

wait (&full); // wait for a full buffer
wait (&mutex); // lock buffer list
Remove resource from a full buffer;
signal (&mutex); // unlock buffer list
signal (&¢empty); // note an empty buffer
Consume resource;

Bounded Buffer (4)

Why do we need the mutex at all?
Where are the critical sections?
What has to hold for deadlock to occur?

» empty = 0 and full =0
» (nc—np)+N=0and np—nc=0
» N=0

What happens if operations on mutex and full/empty are switched around?

» The pattern of signal/wait on full/empty is a common construct often called an
interlock

Readers/Writers and Bounded Buffer are classic synchronization problems

Monitor Readers and Writers

Using Mesa monitor semantics.

Will have four methods: StartRead, StartWrite, EndRead and EndWrite

Monitored data: nr (# of readers) and nw (# of writers) with monitor invariant
(nr>0)A(0<nw<1)A((nr>0) = (nw=0))

Two conditions:

» canRead: nw=20
» canWrite: (nr=0) A (nw=0)

Monitor Readers and Writers

Try #1

» Will be safe, maybe not live: why?

Monitor RW {

int nr 0, nw 0;
Condition canRead,

canWrite;

void StartRead ()
while (nw != 0)
nr++;

}

{
wait (canRead) ;

void EndRead
nr--;

0O {

void StartWrite {
while (nr 0
nw++;

}

|| nw != 0) wait (canWrite);

void EndWrite
nw--;
}

} // end monitor

0 o

}

Monitor Readers and Writers

Need to add signal() and broadcast ()

Monitor RW {
int nr 0, nw = 0;
Condition canRead,

canWrite;

void StartRead ()
while (nw != 0)
nr++;

}

{

wait (canRead) ;

\

can we put a signal here?

void EndRead {

nr--;
if

()

(nr == 0) signal (canWrite);

void StartWrite
while (nr
nwi+;

K

can we put a signal here?

0
|

{

nw

'=0 !'= 0) wait(canWrite);

}

void EndWrite
nw--;
broadcast (canRead) ;
signal (canWrite);

}

// end monitor

(O

Monitor Readers and Writers

Is there any priority between readers and writers?

What if you wanted to ensure that a waiting writer would have priority over new readers?

Monitor Bounded Buffer

Monitor bounded buffer { Resource get resource () {
Resource buffer([N]; while (buffer array is empty)
// Variables for indexing buffer wait (not_empty);
// monitor invariant involves these vars Get resource R from buffer array;
Condition not full; // space in buffer signal (not_full);
Condition not_empty; // value in buffer return R;
}
void put resource (Resource R) { } // end monitor

while (buffer array is full)
wait (not_full);
Add R to buffer array;
signal (not_empty) ;
}

What happens if no threads are waiting when signal is called?

Monitor Queues

Monitor bounded buffer {

Condition not full;

—<ED—<ED*—<ED Waiting to enter

..other variables..
Condition not empty;

@‘-@ Waiting on condition variables

void put resource() {
..wait (not full)..

}

Resource get resource ()

}

t

..signal (not_empty).... f¥¢~"""/”

Executing inside the monitor

Next time

Deadlock (!)

