Lecture 7: Semaphores and monitors
601.418/618 Operating Systems

David Hovemeyer

February 11, 2026



Agenda

» Semaphores
» Monitors
» Condition variables

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang's Fall
2022 slides, which in turn are based on Prof. David Maziéres's OS lecture notes.


https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/

Higher-Level Synchronization

Last time: We looked at using locks to provide mutual exclusion
Locks work, but they have limited semantics

» Just provide mutual exclusion
Instead, we want synchronization mechanisms that

» Block waiters, leave interrupts enabled in critical sections
P Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms

» Semaphores: binary (mutex) and counting
» Monitors: mutexes and condition variables



Semaphores

An abstract data type to provide synchronization
» Described by Dijkstra in the “THE" system in 1968
Semaphores are “integers” that support two operations:

» Semaphore: :P() decrements, blocks until semaphore is open, a.k.a wait ()
> after the Dutch word “Proberen” (to try)
» Pintos sema_down (), pthreads sem_wait ()

» Semaphore: :V() increments, allows another thread to enter, a.k.a signal()
> after the Dutch word “Verhogen” (increment)
» Pintos sema_up(), pthreads sem_post ()

> That’s it! No other operations — not even just reading its value

Semaphore safety property: the semaphore value is always greater than or equal to 0



Blocking in Semaphores

Associated with each semaphore is a queue of waiting threads
When P() is called by a thread:

» If semaphore is open, thread continues
» If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:

> If a thread is waiting on the queue, the thread is unblocked
» If multiple threads are waiting, one is chosen to wake up

» [If no threads are waiting on the queue, the signal is remembered for the next thread
» In other words, V() has “history” (c.f., condition variables)
» This "history” is a counter



Semaphore Types

Semaphores come in two types
Mutex semaphore (or binary semaphore)

> Represents single access to a resource
» Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)

P> Represents a resource with many units available, or a resource that allows certain
kinds of unsynchronized concurrent access (e.g., reading)
» Multiple threads can pass the semaphore

» Number of threads determined by the semaphore “count”
» Mutex has initial count = 1, counting has count = N



Using Semaphores

Use is similar to locks (from last time), but semantics are different

struct Semaphore {
int value;

Queue q;

} S;

withdraw (account, amount) { Threads<
P(S); block

balance = get_balance(account)?\ critical
balance = balance - amount; section
put_balance (account, balance); /
v(s);

return balance;

}
It is undefined which 4

thread runs after a signal




Semaphore Questions

Are there any problems that can be solved with counting semaphores that cannot be
solved with mutex semaphores?

> If a system only gives you mutex semaphore, can you use it to implement counting
semaphores?

Does it matter which thread is unblocked by a signal operation?



Implementing counting semaphores using mutex semaphores

// constructor
CSem(K) {
int val := K;

// counting semaphore initialized to K
// the value of csem

BSem gate(min(1,val)); // 1 if val > 0; 0 if val = 0

BSem mutex(1);
}

// PQ) operation

CSem::P() {
P(gate)
P(mutex) ;
val := val - 1;
if val > 0

V(gate) ;

V(mutex) ;

}

See: http://www.cs.umd.edu/~shankar/412-Notes/10x-countingSemUsingBinarySem.pdf

// protects val

// V() operation

CSem::V() {
P(mutex) ;
val := val + 1;
if val = 1

V(gate);

V(mutex) ;

}


http://www.cs.umd.edu/~shankar/412-Notes/10x-countingSemUsingBinarySem.pdf

Semaphore Implementation in

Pintos

void sema_down (struct semaphore *sema)
{
enum intr level old level;
old level = intr_disable();
while (sema->value == 0) {
list_push_back (&sema->waiters,
&thread_current () ->elem);
thread_block();
}
sema->value--;
intr_set_level (old_level);

void sema_up (struct semaphore *sema)
{
enum intr level old level;
old level = intr_disable();
if (!list_empty (&sema->waiters))
thread unblock(list entry(
ligtipopifront(Esema—>waiters),
struct thread, elem));
sema->value++;
intr_set_level (old_level);

To reference current thread: thread_current ()

thread_block() puts the current thread to sleep

Assignment 1 note:

> leverage semaphore instead of directly using
thread_block() /thread_unblock()




Implementation of thread block()

/* Puts the current thread to sleep. This function
must be called with interrupts turned off.*/
void thread block ()

{

pICk another ASSERT (!intr context ());
thread to run ASSERT (intr get level () == INTR OFF);
'\\\ thread current ()->status = THREAD BLOCKED;
schedule ();

thread_block() assumes the interrupts are disabled
This means we will have the thread sleep with interrupts disabled

Isn't this bad?

» Shouldn’t we only disable interrupts when entering/leaving critical sections but
keep interrupts enabled during critical section?



Interrupts Re-enabled Right After Context Switch

thread yield() {
Disable interrupts;
add current thread to ready list;
schedule(); // context switch
Enable interrupts;

[thread yield]

Disable interrupts;

add current thread to ready list;
schedule () ;

sema_down() {

Disable interrupts;

while (value == 0) {
add current thread to waiters;
thread block() ;

}

value--;

Enable interrupts;

}

[thread yield]
(Returns from schedule () )
Enable interrupts;

[sema_down]

Disable interrupts;

while (value == 0) {
add current thread to waiters;
thread block();

}

[thread yield]
(Returns from schedule () )
Enable interrupts;

Thread 1

Thread 1

Thread 2

Thread 2



Semaphore Summary

Semaphores can be used to solve any traditional synchronization problem

However, they have some drawbacks

P> They are essentially shared global variables
» Can potentially be accessed anywhere in program
» No connection between the semaphore and the data controlled by the semaphore

» Used both for critical sections (mutual exclusion) and coordination (scheduling)
» Note that | had to use comments in the code to distinguish

» No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

» Another approach: Use programming language support



Monitors

A programming language construct that controls access to shared data

» Synchronization code added by compiler, enforced at runtime
> Why is this an advantage?

A monitor is a module that encapsulates

» Shared data structures
» Procedures that operate on the shared data structures
» Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures interact only in
legitimate ways



Monitor Semantics

A monitor guarantees mutual exclusion

» Only one thread can execute any monitor procedure at any time
» The thread is "“in the monitor”

P If a second thread invokes a monitor procedure when a first thread is already

executing one, it blocks
» So the monitor has to have a wait queue. ..

» If a thread within a monitor blocks, another one can enter
What are the implications in terms of parallelism in a monitor?
A monitor invariant is a safety property associated with the monitor

> |t's expressed over the monitored variables.
» It holds whenever a thread enters or exits the monitor.



Account Example

withdraw (amount)

Monitor account { balance = balance - amount;

double balance; Threads
iting__|~SLEBCESN BOURE)
iti

double withdraw (amount) { “t,glgI:tg<

return balance; monitor ‘ return balance (and exit)

When first thread exits, another can
enter. Which one is undefined.

Hey, that was easy!

Monitor invariant: balance > 0



Condition Variables

But what if a thread wants to wait for something inside the monitor?

» If we busy wait, it's bad
> Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread to make progress
once it is in the monitor.

Monitor M ({
. monitored variables
Condition c;

void enterMonitor (...) {
if (extra property not true) wait(c); aits outside of the monitor's m
do what you have to do
if (extra property true) signal (c);

}




Condition Variables

Condition variables support three operations:

> Wait: release monitor lock, wait for condition variable to be signaled
» So condition variables have wait queues, too

» Signal: wake up one waiting thread
» Broadcast: wake up all waiting threads

Condition variables are not boolean objects

» X if (condition_variable) then ... does not make sense
> / if (num_resources == 0) then wait(resources_available) does
> An example later will make this more clear



Condition Vars # Semaphores

Condition variables # semaphores

» Although their operations have similar names, they have entirely different semantics
(such is life, worse yet to come)
> However, they each can be used to implement the other

Access to the monitor is controlled by a lock

> wait() blocks the calling thread, and gives up the lock
> To call wait, the thread has to be in the monitor (hence has lock)
» Semaphore: :wait just blocks the thread on the queue
» signal() causes a waiting thread to wake up
> If there is no waiting thread, the signal is lost
» Semaphore: :signal increases the semaphore count, allowing future entry even if no
thread is waiting
» Condition variables have no history



Signal Semantics

Two flavors of monitors that differ in the scheduling semantics of signal()

» Hoare monitors (original)
> signal() immediately switches from the caller to a waiting thread
» The condition that the waiter was anticipating is guaranteed to hold when waiter
executes
» Signaler must restore monitor invariants before signaling
» Mesa monitors (Mesa, Java)
P> signal() places a waiter on the ready queue, but signaler continues inside monitor
» Condition is not necessarily true when waiter runs again
» Returning from wait () is only a hint that something changed
» Must recheck conditional case



Hoare vs. Mesa Monitors

Hoare monitor semantics:

if (!condition)
wait(cond_var); // <-- condition definitely holds when wait() returns

Mesa/Java monitor semantics:

while (!condition)
wait(cond_var); // <-- condition *might* hold when wait() returns

// <-- condition definitely holds when loop finishes

Tradeoffs:

» Mesa monitors easier to use, more efficient

» Fewer context switches, easy to support broadcast
» Hoare monitors leave less to chance

» Easier to reason about the program



Condition variables and locks

Condition variables are also used without monitors in conjunction with locks (e.g.,
pthreads)

void cond_init (cond_t *, ...);
void cond_wait (cond_t *c, mutex_t *m);

» Atomically unlock m and sleep until ¢ signaled
» Then re-acquire m and resume executing

void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

» Wake one/all threads waiting on ¢



Condition variables and locks

A monitor ~ a module whose state includes condition variable(s) and a lock
» Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry and release() on
exit

» But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal on independent
conditions



Condition variables and locks

Why must cond_wait both release mutex_t and block the caller?
» void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

while (count == BUFFER SIZE) {
mutex unlock (&mutex) ;
cond wait (&not full);
mutex lock (&mutex) ;




Condition variables and locks

Why must cond_wait both release mutex_t and block the caller?
» void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?
Producer

while (count == BUFFER SIZE) {
mutex unlock (&mutex) ;

Consumer

mutex lock (&mutex) ;
. count--;
cond signal (&not full);
cond wait (&not full); mutex unlock (&mutex) ;
mutex lock (&mutex) ;



Using condition variables and locks

Alternation of two threads (ping-pong)

Each executes the following:

Lock lock;
Condition cond;

void ping pong ()
acquire (lock) ;
while (1) {

printf (%

wait (cond,

}

release (lock);

(cond) ;

lock); «— |

{

g or pong\n”);

Must acquire lock before you can wait
(similar to needing interrupts disabled
to call thread block in Pintos)

Wait atomically releases lock
and blocks until signal()

After signal(), wait re-acquires
lock before returning




Monitors and Java

A lock and condition variable are in every Java object
> No explicit classes for locks or condition variables
Every object is/has a monitor

» At most one thread can be inside an object’s monitor
» A thread enters an object’'s monitor by
» Executing a method declared “synchronized”
» Executing the body of a “synchronized” statement
» The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning
» The lock itself is implicit, programmers do not worry about it



Monitors and Java

Every object can be treated as a condition variable
» Half of Object's methods are for synchronization!
Take a look at the Java Object class:

» Object.wait(*) is Condition::wait()
> Object.notify() is Condition: :signal()
» Object.notifyAll() is Condition: :broadcast ()



Summary

Semaphores

» wait()/signal() implement blocking mutual exclusion

» Also used as atomic counters (counting semaphores)
» Often used to count availability of units of a resource

» Can be inconvenient to use
Monitors

» Synchronizes execution within procedures that manipulate encapsulated data shared

among procedures
» Only one thread can execute within a monitor at a time

P Relies upon high-level language support
Condition variables

» Used by threads as a synchronization point to wait for events
» Inside monitors, or outside with locks



Next time

Synchronization in practice



