
Exam 3
601.418/618 Operating Systems

May 9, 2024

Complete all questions.

Time: 90 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:

Question 1. [5 points] In the Unix Version 6 filesystem, addresses of disk blocks are 16
bits in size. Assuming that disk blocks are 512 = 29 bytes, what is the size in bytes of the
largest hard disk that could be completely utilized by a Unix Version 6 filesystem? Show
your work.

Question 2. [10 points] A Unix V6 inode has an array of 8 disk block addresses which
specify the allocated blocks for the file or directory represented by the inode. Assume
that disk blocks are 512 = 29 bytes.

(a) For a “small mode” file or directory, each of the 8 addresses in the array is a direct
pointer to a storage block. What is maximum size in bytes of a “small mode” file or
directory? You may express your answer as a formula. Show your work.

(b) For a “large mode” file or directory, the first 7 addresses are pointers to singly-indirect
blocks, and the last address is a pointer to a doubly-indirect block. What is the maximum
size in bytes of a “large mode” file or directory. Recall from Question 1 that disk addresses
are 16 bits (i.e., 2 bytes.) You may express your answer as a formula. Show your work.

Question 3. [10 points] Unix filesystems have traditionally supported “sparse” files, in
which a process can use the lseek system call to set the current file position beyond the
current end of the file, and any bytes in the “hole” created between the original end of file
offset and the new end of file offset are returned as zeroes if read.

Briefly explain why and how the OS can avoid allocating storage space for a hole created
in this manner. Your answer should be specific about what the inode and associated
metadata will look like for a file with a hole. Drawing a diagram is recommended.

Question 4. [10 points]

(a) What information is stored in a Unix directory entry?

(b) In the Unix filesystem, the storage for a directory’s contents are managed in the same
way as the storage for a file’s contents. Does that mean that it would make sense to allow
a process to use the write system call to modify a directory’s contents, assuming that it
has permission to modify the directory? Briefly explain why or why not.

Question 5. [15 points] Assume that a filesystem implementation uses an array of
uint32_t elements as a bitmap to keep track of which disk blocks are in use and which
are available for allocation. If the filesystem has 𝑁 storage blocks, for a storage block with
address 𝑖 (0 ≤ 𝑖 < 𝑁), if bit 𝑖 in the bitmap is set to 0, block 𝑖 is available for allocation,
and if bit 𝑖 of the bitmap is set to 1, then block 𝑖 is in use.

The following functions show how getting and setting a bit could be implemented:

// set bit i to 1 or 0
void set_bit(uint32_t *bitmap, unsigned N, unsigned i, int val) {
assert(i < N);
assert(val == 0 || val == 1);
if (val == 1)
bitmap[i / 32] |= (1 << (i % 32)); // set bit

else
bitmap[i / 32] &= ~(1 << (i % 32)); // clear bit

}

// get the value of bit i (1 or 0)
int get_bit(uint32_t *bitmap, unsigned N, unsigned i) {
assert(i < N);
return (bitmap[i / 32] & (1 << (i % 32))) != 0;

}

On the next page, complete the implementation of the reserve function. It should

1. Find a series of nblocks consecutive available storage blocks

2. Mark each block in the series as allocated (by setting their bits to 1)

3. Set the variable that pointed-to by start to the address of the first block in the series

If these steps are successful, the function should return 1, otherwise it should return 0 (if
no sufficiently-large series of consecutive available blocks exists.)

Your code may call the set_bit and get_bit functions shown above.

[Question 5 continues on the next page.]

[Question 5 continues.]

int reserve(uint32_t *bitmap, unsigned N, unsigned nblocks, unsigned *start) {

Question 6. [10 points] The Unix/Linux fsync system call has the following signature:

int fsync(int fd);

When a process calls fsync, the kernel flushes the modified data and/or metadata of the
file indicated by fd to persistent storage (disk or SSD.)

Briefly sketch what the implementation of fsync in the OS kernel would look like. You can
use pseudo code, but be explicit about what data structures (both on-disk and in-memory)
are accessed.

Question 7. [10 points] Consider the following program (assume appropriate headers
have been included):

void error(void) {
fprintf(stderr, "error: %s\n", strerror(errno));
exit(1);

}

int main(void) {
int fd;
if ((fd = open("/home/daveho/out.txt", O_WRONLY|O_CREAT, 0600)) < 0

|| write(fd, "hello, world\n", 13) != 13
|| fsync(fd) != 0)

error();
return 0;

}

Describe a scenario where the call to fsync() in this program succeeds (returns 0),
but at a later time, the command cat /home/daveho/out.txt fails to print the out-
put hello, world . Hint: if fsync() succeeds, the indicated file’s data and metadata
has been written to persistent storage. Can you think of a reason why this would not
guarantee the success of the cat command? Assume that the user running the cat is the
same user that ran the above program. Note that the octal file permissions constant 0600
allows read and write permission for the user.

Question 8. [5 points] In the FAT16 file system, each entry in the FAT (File Allocation
Table) represents one disk storage block, and sequence of storage blocks allocated to a
specific file are tracked by having each FAT entry representing a storage block allocated to
the file contain the index of the next allocated block, with the exception of the FAT entry
for the last storage block allocated to a file, which contains a special terminator value. The
FAT entries are 16 bits (2 bytes) in size, allowing for approximately 216 distinct storage
blocks maximum.

Assume that a process is sequentially reading the data in a file on a FAT16 filesystem with
𝑁 total storage blocks. How many disk seeks will the OS kernel need to perform in order
to determine the sequence of storage blocks storing the file’s data? Note that this total
should not include seeks needed to read the file’s actual data. Assume that the OS kernel
will use appropriately techniques to minimize seeks. If any data structures are involved
in optimizing access to filesystem metadata, describe those data structures.

Question 9. [5 points] Briefly describe the problem that journaling filesystems are meant
to address.

Question 10. [5 points] Compared to a “normal” filesystem (e.g., the original Unix
filesystem or the Unix Fast Filesystem), what is the most significant performance cost
associated with journaling filesystems?

Question 11. [5 points] The filesystem buffer cache is used for both caching of filesystem
data and buffering of I/O operations. Briefly explain how the buffer cache achieves both
caching and buffering, and how each benefits system performance.

Question 12. [10 points] The following function is meant to rename a regular file (not a
directory) from its original name to a new name:

// returns true if successful, false if not
bool rename(const char *orig_name, const char *new_name) {
return link(orig_name, new_name) == 0 &&

unlink(orig_name) == 0;
}

Note that both link and unlink return 0 to indicate success. The link system call creates
a new hard link to a file, and the unlink system call removes a hard link to a file.

(a) Describe a scenario where a call to rename succeeds, but a system crash would result
in the file being available as neither the old name or the new name. Assume that the
filesystem is not a journaling filesystem.

(b) If scenario (a) occurs on a typical Unix or Linux system, describe how the contents of
the file could be recovered.

[Extra page for answers and/or scratch work.]

[Extra page for answers and/or scratch work.]

