
Exam 1
601.418/618 Operating Systems

February 26, 2024

Complete all questions.

Time: 75 minutes.

I affirm that I have completed this exam without unauthorized assistance
from any person, materials, or device.

Signed:

Print name:

Date:



Question 1. [10 points] For each of the following operations, state whether it should be a
privileged or unprivileged operation, and briefly justify your choice.

Operation
Privileged or
unprivileged? Justification

Store a value to a
general-purpose
CPU register

Store a value to a
location in virtual
memory

Store a value to a
location in physical
memory

Register a handler
for a hardware
interrupt

Read data from the
keyboard controller

Disable interrupts

Enable interrupts

Modify a page table
entry

Write data to the
disk controller

Flush the TLB



Question 2. [10 points] Recall that the five process states are Created, Ready, Running,
Waiting, and Finished. (For this question, we will assume that each process has a single
thread.)

(a) Draw a diagram showing the states and transitions between states. Each transition
should be drawn as an arrow showing its direction.

(b) Give an example of a situation in which a process will transition from the Running
state to the Waiting state.

(c) Give an example of a situation in which a process will transition from the Waiting state
to the Ready state.

(d) Is it possible for a process to transition from the Running state to the Ready state? If
so, give an example of a situation where that would happen. If not, explain why not.



Question 3. [10 points]

Processes:

Process Arrival CPU time

0 1 8
1 4 7
2 7 2
3 8 4

Definitions:

The wait time of a process is
Tstart − Tarrival

The turnaround time of a process is
Tfinish − Tarrival

(a) Determine the start time, finish time, wait time, and turnaround time of each process
assuming First Come, First Served (FCFS) scheduling. Assume that once a process begins
executing it continues until it has finished. Drawing a diagram will be helpful (you can
use to opposite page for scratch work if necessary.)

Process Start time Finish time Wait time Turnaround time

0

1

2

3

(b) What is the average wait time and average turnaround time for the above processes
using FCFS scheduling? You may express your answer as a fraction.

Average wait time:

Average turnaround time:



[Use this page for scratch work if necessary for Question 3.]



Question 4. [10 points]

Processes:

Process Arrival CPU time

0 1 8
1 4 7
2 7 2
3 8 4

Definitions:

The wait time of a process is
Tstart − Tarrival

The turnaround time of a process is
Tfinish − Tarrival

(a) Determine the start time, finish time, wait time, and turnaround time of each process
assuming Shortest Job First (SJF) scheduling. Assume that once a process begins executing
it continues until it has finished. Drawing a diagram will be helpful (you can use to
opposite page for scratch work if necessary.)

Process Start time Finish time Wait time Turnaround time

0

1

2

3

(b) What is the average wait time and average turnaround time for the above processes
using SJF scheduling? You may express your answer as a fraction.

Average wait time:

Average turnaround time:



[Use this page for scratch work for Question 4.]



Question 5. [10 points]

Processes:

Process Arrival CPU time

0 1 8
1 4 7
2 7 2

Definitions:

The wait time of a process is
Tstart − Tarrival

The turnaround time of a process is
Tfinish − Tarrival

(a) Determine the start time, finish time, wait time, and turnaround time of each process
assuming Round Robin (RR) scheduling. Assume that the scheduling quantum is 1 (i.e.,
time slices are one unit of time in duration.) Also, assume that if a process’s arrival time
is k, it starts just before time k. (For example, if a process arrives at time 3, it is ready to
execute just before the time slice starting at time 3.) Drawing a diagram will be helpful
(you can use to opposite page for scratch work.)

Process Start time Finish time Wait time Turnaround time

0

1

2

(b) What is the average wait time and average turnaround time for the above processes
using RR scheduling (with a quantum of 1)?

Average wait time:

Average turnaround time:



[Use this page for scratch work for Question 4.]



Question 6. [4 points] Briefly explain why the timer interrupt is necessary.

Question 7. [3 points] Briefly discuss the relative advantages and disadvantages of a
shorter scheduling quantum vs. a longer scheduling quantum.

Question 8. [3 points] Briefly discuss the relative advantages and disadvantages of the
M :N thread model vs. the 1:1 thread model.



Question 9. [30 points] Recall that in the dining
philosophers problem, N philosophers sit at a table
with N forks. Each philosopher requires two forks to
eat, and must obtain both forks (to her left and right)
before eating. Each philosopher is described by the
following code:

int i = /* philosopher number, in
range 1..N, inclusive */;

while (true) {
think();
obtain_forks(i); /* acquire forks i and (i+1)%N */
eat();
release_forks(i); /* release forks i and (i+1)%N */

}

(a) Assume that the forks are represented as an array of semaphore with initial count 1,
and assume obtain_forks() and release_forks() are implemented as follows:

#define N 5 /* number of philosophers */
semaphore forks[N]; /* each initialized to 1 */

void obtain_forks(int i) {
down(&forks[i]);
down(&forks[(i+1) % N]);

}

void release_forks(int i) {
up(&forks[i]);
up(&forks[(i+1) % N]);

}

Describe a scenario where the system reaches deadlock.

[Question 9 continues on next page.]



[Question 9 continues.]

(b) Consider a modified setup where in addition to
the N forks positioned between the philosophers,
there is one additional fork in the center of the table,
numbered N , for a total of N + 1 forks. Assume that
in addition to being able to reach the forks to her left
and right, each philosopher can reach the fork in the
center of the table, and that acquiring any two forks
is sufficient to be able to eat.

(a) Show implementations of the obtain_forks()
and release_forks() functions which are both
fair and not prone to deadlock.

#define N 5 /* number of philosophers */
semaphore forks[N+1]; /* each initialized to 1 */

void obtain_forks(int i) { void release_forks(int i) {

(b) Briefly explain why your solution is free from deadlocks.

(c) Briefly explain why your solution is fair. (“Fair” means that no task has any advantage
or disadvantage in gaining access to resources compared to other tasks.) Assume that
semaphores are fair (meaning that down operations proceed in order.)



Question 10. [10 points]

(a) In a “traditional” operating system in which each process has (effectively) a single
thread, what information is part of the Process Control Block (PCB)?

(b) In an operating system using the 1:1 thread model, what information is part of the
Thread Control Block (TCB)? Hint: it should be a subset of what you listed in (a).



[Extra page for answers and/or scratch work.]



[Extra page for answers and/or scratch work.]


