
Lecture 19: fsck, Journaling
601.418/618 Operating Systems

David Hovemeyer

April 21, 2025



Agenda

▶ Write buffering, filesystem consistency
▶ fsck, crash recovery
▶ Journaling

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


Review: File I/O Path (Reads)

File system uses buffer cache
to speed up I/O

read() from file

▶ Check if block is in cache
▶ If so, return block to user [1 in figure]
▶ If not, read from disk, insert into

cache, return to user [2]

Block not in cache

Block in cache

Le
av

e 
co

py
 in

 c
ac

he

Main memory
(buffer cache)

Disk

1

2



Review: File I/O Path (Writes)

write() to file

▶ Write is buffered in memory
(“write behind”) [1]

▶ Sometime later, OS decides
to write to disk [2]

▶ Periodic flush or fsync call

Why delay writes?

▶ Implications for performance
▶ Implications for reliability

Later write to disk

Buffer in memory

2

Main memory
(buffer cache)

Disk

1



The Consistent Update Problem

Goal:

▶ Atomically update file system from one consistent state to another
▶ What do we mean by consistent state?

Challenge:

▶ An update may require modifying several sectors, despite that the disk only
provides atomic write of one sector at a time



Example: File Creation of /a.txt

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

Initial State



Example: File Creation of /a.txt

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

01000 /

<‘.’, #2>
<‘..’, #2>

Read to in-memory cache



Example: File Creation of /a.txt

<‘.’, #2>
<‘..’, #2>

01000

Disk 01000 01000 /

inode
map

block
map

inode array data blocks

Memory

01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

Modify metadata and blocks

Dirty blocks, memory state and disk state are inconsistent: must write to disk



Crash?

Disk: atomically write one sector

▶ Atomic: if crash, a sector is either completely written, or none of this sector is
written

An FS operation may modify multiple sectors

Crash → FS partially updated



Possible Crash Scenarios
File creation dirties three blocks

▶ inode bitmap (B)
▶ inode for new file (I)
▶ parent directory data block (D)

Old and new contents of the blocks:

Old New

B = 01000 B’ = 01010
I = free I’ = allocated, initialized
D = {} D’ = {<‘a.txt’, 4>}

Also: a block could consist of multiple sectors! (For simplicity, we’ll assume one sector
per block for now.)



Possible Crash Scenarios

Crash scenarios: any subset can be written

▶ B I D
▶ B’ I D
▶ B I’ D
▶ B I D’
▶ B’ I’ D
▶ B’ I D’
▶ B I’ D’
▶ B’ I’ D’



The General Problem

Writes: Have to update disk with N writes

▶ Disk does only a single write atomically

Crashes: System may crash at arbitrary point

▶ Bad case: In the middle of an update sequence

Desire: To update on-disk structures atomically

▶ Either all should happen or none



Example: Bitmap First
Write Ordering: Bitmap (B), Inode (I), Data (D)

▶ But CRASH after B has reached disk, before I or D (scenario B’ I D)

Result?

Disk 01010 /

B I D

Memory 01010



Example: Inode First
Write Ordering: Inode (I), Bitmap (B), Data (D)

▶ But CRASH after I has reached disk, before B or D (scenario B I’ D)

Result?

Disk 01000 /

B I D

Memory 01010



Example: Inode First
Write Ordering: Inode (I), Bitmap (B), Data (D)

▶ But CRASH after I AND B have reached disk, before D (scenario B’ I’ D)

Result?

Disk 01010 /

B I D

Memory 01010



Example: Inode First
Write Ordering: Inode (I), Bitmap (B), Data (D)

▶ But CRASH after I AND B have reached disk, before D (scenario B’ I’ D)

Result?

▶ What if data block is a new block for the new file (i.e., create file with data)?

Disk 01010 /

B I D

Memory 01010



Example: Data First
Write Ordering: Data (D) , Bitmap (B), Inode (I)

▶ CRASH after D has reached disk, before I or B (scenario B I D’)

Result?

Disk 01000 /

Memory 01010

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

B I D



Example: Data First
Write Ordering: Data (D) , Bitmap (B), Inode (I)

▶ CRASH after D has reached disk, before I or B (scenario B I D’)

Result?

▶ What if data block is a new block for the new file (i.e., create file with data)?

Disk 01000 /

Memory 01010
‘Hello, 318’

B I D



Traditional Solution: fsck

fsck: “file system checker”

When system boots:

▶ Make multiple passes over file system, looking for inconsistencies
▶ e.g., inode pointers and bitmaps, directory entries and inode reference counts

▶ Try to fix automatically



fsck Example 1

inode
link_count = 1

block
(number 123)

0011001100

for block 123

1
data bitmap

X



fsck Example 2

Dir Entry

Dir Entry

inode
link_count = 1

2
X



fsck Example 3

inode
link_count = 1

Dir Entry

ls -l /
total 150
drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/
drwx------. 2 16384 Aug 1 10:57 lost+found/
...

???? How to fix?

X
Directory entry should

exist, but doesn't



fsck Example 4

Block
(number 123)

inode
link_count = 1

inode
link_count = 1

???? How to fix?



fsck Example 4.a

Block
(number 123)

inode
link_count = 1

???? How to fix?inode
link_count = 1

invalid

X

valid



fsck Example 4.b

Block
(number 123)

Block
(number 789)

inode
link_count = 1

inode
link_count = 1valid

valid

Copy



Traditional Solution: fsck

fsck: “file system checker”

When system boots:

▶ Make multiple passes over file system, looking for inconsistencies
▶ Try to fix automatically

▶ Example: B’ I D, B I’ D
▶ Or punt to admin

▶ Check lost+found, manually put the missing-link files to the correct place



Traditional Solution: fsck

Problem:

▶ Cannot fix all crash scenarios
▶ Can B’ I D’ be fixed?

▶ Performance
▶ Sometimes takes hours to run

▶ Checking a 600GB disk takes ~70 minutes
▶ Does fsck have to run upon every reboot?

▶ Not well-defined consistency



Another Solution: Journaling

Idea: Write “intent” down to disk before updating file system

▶ Called “Write Ahead Logging” or “journaling”
▶ Originated from database community

When crash occurs, look through log to see what was going on

▶ Use contents of log to fix file system structures
▶ Crash before “intent” is written → no-op
▶ Crash after “intent” is written → redo op

▶ The process is called “recovery”



Case Study: Linux Ext3

Write real block contents of the update to log

▶ Four totally ordered steps:
1. Commit dirty blocks to journal as one transaction (TxBegin, I, B, D blocks)
2. Write commit record (TxEnd)
3. Copy dirty blocks to real file system (checkpointing)
4. Reclaim the journal space for the transaction



Step 1: Write Blocks to Journal

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1



Step 2: Write Commit Record

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1



Step 3: Copy Dirty Blocks to Real FS

Disk 01010 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal 01010TxB
id=1

TxE
id=1



Step 4: Reclaim Journal Space

Disk 01000 01000 /

Memory 01010 /

<‘.’, #2>
<‘..’, #2>

<‘a.txt’, #4>

journal



What If There Is A Crash?

Recovery: Go through log and “redo” operations that have been successfully committed
to log

What if . . .

▶ TxBegin but not TxEnd in log?
▶ TxBegin through TxEnd are in log, but D has not reached the journal?

journal I[v2] B[v2] ??TxB
id=1

TxE
id=1

▶ How could this happen?
▶ Why don’t we merge step 2 and step 1?

▶ Tx in log, I, B, D have been checkpointed, but Tx is not freed from log?



Summary of Journaling Write Orders

Journal writes < FS writes

▶ Otherwise, crash → FS broken, but no record in journal to patch it up

FS writes < Journal clear

▶ Otherwise, crash → FS broken, but record in journal is already cleared

Journal writes < commit record write < FS writes

▶ Otherwise, crash → record appears committed, but contains garbage



Ext3 Journaling Modes
Journaling has cost

▶ one write = two disk writes, two seeks

Several journaling modes balance consistency and performance

Data journaling: journal all writes, including file data

▶ Problem: expensive to journal data

Metadata journaling: journal only metadata

▶ Used by most FS (IBM JFS, SGI XFS, NTFS)
▶ Problem: file may contain garbage data

Ordered mode: write file data to real FS first, then journal metadata

▶ Default mode for ext3
▶ Problem: old file may contain new data



Summary

The consistent update problem

▶ Example of file creation and different crash scenarios

Two approaches to crash consistency

▶ fsck: slow, not well-defined consistency
▶ Journaling: well-defined consistency, different modes

Other approach

▶ Soft updates (advanced OS topics)



Next Time

virtualization, hypervisors


