
Lecture 7: Semaphores and monitors
601.418/618 Operating Systems

David Hovemeyer

February 12, 2024



Agenda

▶ Semaphores
▶ Monitors
▶ Condition variables

Acknowledgments: These slides are shamelessly adapted from Prof. Ryan Huang’s Fall
2022 slides, which in turn are based on Prof. David Mazières’s OS lecture notes.

https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.cs.jhu.edu/~huang/cs318/fall22/schedule.html
https://www.scs.stanford.edu/21wi-cs140/notes/


Higher-Level Synchronization

Last time: We looked at using locks to provide mutual exclusion

Locks work, but they have limited semantics

▶ Just provide mutual exclusion

Instead, we want synchronization mechanisms that

▶ Block waiters, leave interrupts enabled in critical sections
▶ Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms

▶ Semaphores: binary (mutex) and counting
▶ Monitors: mutexes and condition variables



Semaphores

An abstract data type to provide synchronization

▶ Described by Dijkstra in the “THE” system in 1968

Semaphores are “integers” that support two operations:

▶ Semaphore::P() decrements, blocks until semaphore is open, a.k.a wait()
▶ after the Dutch word “Proberen” (to try)
▶ Pintos sema_down(), pthreads sem_wait()

▶ Semaphore::V() increments, allows another thread to enter, a.k.a signal()
▶ after the Dutch word “Verhogen” (increment)
▶ Pintos sema_up(), pthreads sem_post()

▶ That’s it! No other operations – not even just reading its value

Semaphore safety property: the semaphore value is always greater than or equal to 0



Blocking in Semaphores

Associated with each semaphore is a queue of waiting threads

When P() is called by a thread:

▶ If semaphore is open, thread continues
▶ If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:

▶ If a thread is waiting on the queue, the thread is unblocked
▶ If multiple threads are waiting, one is chosen to wake up

▶ If no threads are waiting on the queue, the signal is remembered for the next thread
▶ In other words, V() has “history” (c.f., condition variables)
▶ This “history” is a counter



Semaphore Types

Semaphores come in two types

Mutex semaphore (or binary semaphore)

▶ Represents single access to a resource
▶ Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)

▶ Represents a resource with many units available, or a resource that allows certain
kinds of unsynchronized concurrent access (e.g., reading)

▶ Multiple threads can pass the semaphore
▶ Number of threads determined by the semaphore “count”

▶ Mutex has initial count = 1, counting has count = N



Using Semaphores

Use is similar to locks (from last time), but semantics are different

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

P(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
v(S);
return balance;

}

P(S);
balance = get_balance(account);
balance = balance – amount;

P(S);

put_balance(account, balance);
v(S);

P(S);

…
v(S);

…
v(S);

Threads 
block

It is undefined which 
thread runs after a signal

critical 
section



Semaphore Questions

Are there any problems that can be solved with counting semaphores that cannot be
solved with mutex semaphores?

▶ If a system only gives you mutex semaphore, can you use it to implement counting
semaphores?

Does it matter which thread is unblocked by a signal operation?



Semaphore Implementation in Pintos
void sema_down(struct semaphore *sema)
{
enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {
list_push_back(&sema->waiters,

&thread_current()->elem);
thread_block();

}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{
enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))
thread_unblock(list_entry(

list_pop_front(&sema->waiters),
struct thread, elem));

sema->value++;
intr_set_level(old_level);

}

To reference current thread: thread_current()

thread_block() puts the current thread to sleep

Assignment 1 note:

▶ leverage semaphore instead of directly using
thread_block()/thread_unblock()



Implementation of thread_block()

/* Puts the current thread to sleep. This function 
must be called with interrupts turned off.*/
void thread_block ()
{
ASSERT (!intr_context ());
ASSERT (intr_get_level () == INTR_OFF);
thread_current ()->status = THREAD_BLOCKED;
schedule ();

}

pick another 
thread to run

thread_block() assumes the interrupts are disabled

This means we will have the thread sleep with interrupts disabled

Isn’t this bad?

▶ Shouldn’t we only disable interrupts when entering/leaving critical sections but
keep interrupts enabled during critical section?



Interrupts Re-enabled Right After Context Switch

sema_down() {
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}
value--;
Enable interrupts;

}

thread_yield() {
Disable interrupts;
add current thread to ready_list; 
schedule(); // context switch
Enable interrupts;

}

[sema_down]
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}

[thread_yield]
(Returns from schedule())
Enable interrupts;

[thread_yield]
Disable interrupts;
add current thread to ready_list; 
schedule();

[thread_yield]
(Returns from schedule())
Enable interrupts;

Thread 1

Thread 2

Thread 2

Thread 1

…



Semaphore Summary

Semaphores can be used to solve any traditional synchronization problem

However, they have some drawbacks

▶ They are essentially shared global variables
▶ Can potentially be accessed anywhere in program

▶ No connection between the semaphore and the data controlled by the semaphore
▶ Used both for critical sections (mutual exclusion) and coordination (scheduling)

▶ Note that I had to use comments in the code to distinguish
▶ No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

▶ Another approach: Use programming language support



Monitors

A programming language construct that controls access to shared data

▶ Synchronization code added by compiler, enforced at runtime
▶ Why is this an advantage?

A monitor is a module that encapsulates

▶ Shared data structures
▶ Procedures that operate on the shared data structures
▶ Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures interact only in
legitimate ways



Monitor Semantics

A monitor guarantees mutual exclusion

▶ Only one thread can execute any monitor procedure at any time
▶ The thread is “in the monitor”

▶ If a second thread invokes a monitor procedure when a first thread is already
executing one, it blocks
▶ So the monitor has to have a wait queue. . .

▶ If a thread within a monitor blocks, another one can enter

What are the implications in terms of parallelism in a monitor?

A monitor invariant is a safety property associated with the monitor

▶ It’s expressed over the monitored variables.
▶ It holds whenever a thread enters or exits the monitor.



Account Example

Monitor account {
double balance;

double withdraw(amount) {
balance = balance – amount;
return balance;

}
}

withdraw(amount)
balance = balance – amount;

withdraw(amount)

return balance (and exit)

withdraw(amount)

balance = balance – amount
return balance;

balance = balance – amount;
return balance;

Threads 
block 

waiting 
to get 
into 

monitor

When first thread exits, another can 
enter. Which one is undefined.

Hey, that was easy!

Monitor invariant: balance ≥ 0



Condition Variables

But what if a thread wants to wait for something inside the monitor?

▶ If we busy wait, it’s bad
▶ Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread to make progress
once it is in the monitor.

Monitor M {
... monitored variables
Condition c;

void enterMonitor (...) {
if (extra property not true) wait(c); waits outside of the monitor's mutex
do what you have to do
if (extra property true) signal(c); brings in one thread waiting on condition

}



Condition Variables

Condition variables support three operations:

▶ Wait: release monitor lock, wait for condition variable to be signaled
▶ So condition variables have wait queues, too

▶ Signal: wake up one waiting thread
▶ Broadcast: wake up all waiting threads

Condition variables are not boolean objects

▶ if (condition_variable) then ... does not make sense
▶ if (num_resources == 0) then wait(resources_available) does
▶ An example later will make this more clear



Condition Vars ̸= Semaphores

Condition variables ̸= semaphores

▶ Although their operations have similar names, they have entirely different semantics
(such is life, worse yet to come)

▶ However, they each can be used to implement the other

Access to the monitor is controlled by a lock

▶ wait() blocks the calling thread, and gives up the lock
▶ To call wait, the thread has to be in the monitor (hence has lock)
▶ Semaphore::wait just blocks the thread on the queue

▶ signal() causes a waiting thread to wake up
▶ If there is no waiting thread, the signal is lost
▶ Semaphore::signal increases the semaphore count, allowing future entry even if no

thread is waiting
▶ Condition variables have no history



Signal Semantics

Two flavors of monitors that differ in the scheduling semantics of signal()

▶ Hoare monitors (original)
▶ signal() immediately switches from the caller to a waiting thread
▶ The condition that the waiter was anticipating is guaranteed to hold when waiter

executes
▶ Signaler must restore monitor invariants before signaling

▶ Mesa monitors (Mesa, Java)
▶ signal() places a waiter on the ready queue, but signaler continues inside monitor
▶ Condition is not necessarily true when waiter runs again
▶ Returning from wait() is only a hint that something changed
▶ Must recheck conditional case



Hoare vs. Mesa Monitors

Hoare monitor semantics:

if (!condition)
wait(cond_var); // <-- condition definitely holds when wait() returns

Mesa/Java monitor semantics:

while (!condition)
wait(cond_var); // <-- condition *might* hold when wait() returns

// <-- condition definitely holds when loop finishes

Tradeoffs:

▶ Mesa monitors easier to use, more efficient
▶ Fewer context switches, easy to support broadcast

▶ Hoare monitors leave less to chance
▶ Easier to reason about the program



Condition variables and locks

Condition variables are also used without monitors in conjunction with locks (e.g.,
pthreads)

void cond_init (cond_t *, ...);

void cond_wait (cond_t *c, mutex_t *m);

▶ Atomically unlock m and sleep until c signaled
▶ Then re-acquire m and resume executing

void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

▶ Wake one/all threads waiting on c



Condition variables and locks

A monitor ≈ a module whose state includes condition variable(s) and a lock

▶ Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry and release() on
exit

▶ But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal on independent
conditions



Condition variables and locks

Why must cond_wait both release mutex_t and block the caller?

▶ void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);
cond_wait(&not_full);
mutex_lock(&mutex);

}



Condition variables and locks

Why must cond_wait both release mutex_t and block the caller?

▶ void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

cond_wait(&not_full);
mutex_lock(&mutex);

}

mutex_lock(&mutex); 
... count--;
cond_signal(&not_full);
mutex_unlock(&mutex); 

Consumer

Producer



Using condition variables and locks

Alternation of two threads (ping-pong)

Each executes the following:

Lock lock;
Condition cond;

void ping_pong () {
acquire(lock);
while (1) {

printf(“ping or pong\n”);
signal(cond);
wait(cond, lock);

}
release(lock);

}

Must acquire lock before you can wait 
(similar to needing interrupts disabled 
to call thread_block in Pintos)

Wait atomically releases lock 
and blocks until signal()

After signal(), wait re-acquires
lock before returning



Monitors and Java

A lock and condition variable are in every Java object

▶ No explicit classes for locks or condition variables

Every object is/has a monitor

▶ At most one thread can be inside an object’s monitor
▶ A thread enters an object’s monitor by

▶ Executing a method declared “synchronized”
▶ Executing the body of a “synchronized” statement

▶ The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning
▶ The lock itself is implicit, programmers do not worry about it



Monitors and Java

Every object can be treated as a condition variable

▶ Half of Object’s methods are for synchronization!

Take a look at the Java Object class:

▶ Object.wait(*) is Condition::wait()
▶ Object.notify() is Condition::signal()
▶ Object.notifyAll() is Condition::broadcast()



Summary
Semaphores

▶ wait()/signal() implement blocking mutual exclusion
▶ Also used as atomic counters (counting semaphores)

▶ Often used to count availability of units of a resource
▶ Can be inconvenient to use

Monitors

▶ Synchronizes execution within procedures that manipulate encapsulated data shared
among procedures
▶ Only one thread can execute within a monitor at a time

▶ Relies upon high-level language support

Condition variables

▶ Used by threads as a synchronization point to wait for events
▶ Inside monitors, or outside with locks



Next time

Synchronization in practice


