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Recap: architectural support

Architectural features to allow a robust process abstraction:
▶ Execution modes (kernel mode vs. user mode)
▶ Event handling (asynchronous vs. synchronous, hardware-generated

vs. software-generated)
▶ Synchronization (disabling/enabling interrupts, atomic machine instructions)

Today: focus on how these hardware features are used to create the process abstraction.



Processes: concepts



Processes

Questions to think about:
▶ What data structures are needed to represent a process
▶ How to processes utilize the CPU?

▶ What is the OS kernel’s role in allowing processes to share the CPU?
▶ What is the lifecycle of a process?

▶ As it runs, what are the important states it moves through?



Process abstraction

In a traditional OS kernel, processes are the basic unit of scheduling.
▶ I.e., when the OS kernel makes a scheduling decision, it chooses a runnable process

Traditionally, the term “process” is synonymous with “job” or “task”.
▶ Looking ahead: threads execute within a process, and this will change our view of

scheduling

A process is a running program.
▶ A “program” is a static entity: instructions and data that have the potential to

become a process.
▶ A “process” is a dynamic entity: the instructions of a program are actually being

executed.



Process scheduling in a nutshell



The early days

In the early days of computing, batch processing was the norm.

Programs would be run one at a time:

1. Reset computer
2. Load program from media (punched cards, paper tape, magnetic tape, etc.)
3. Execute program (might involve reading data from media)
4. Wait for program to finish and store or print its output

A human operator is required to supervise and control the machine.



IBM 1401

Source: http://www.columbia.edu/cu/computinghistory/1401.html

http://www.columbia.edu/cu/computinghistory/1401.html


Drawbacks of batch processing

Users of the system typically have to wait hours or days before their job is run and they
can see the program output.
▶ Imagine the feeling if you found that your program had a bug!

The CPU spends much of its time idle (between jobs and when waiting for data to be
read from or written to media.)



Modern OS



Modern OS

On a modern OS, we expect that multiple programs can run “at the same time.”
▶ If a process is ready to execute instructions, and a CPU is available, we want the

process to execute

If the system has multiple users, their processes can all run “at the same time.”
▶ This idea is called “time sharing”



Batch processing still has its uses

Note that there are specialized situations where batch processing still make sense,
especially in cases where we want a single program to have full access to the CPU(s).

Scheduling CPU-intensive scientific computations on high-performance computing
clusters is a good example.
▶ When such a program runs, we don’t want it to compete with other processes for

access to the CPU(s)
▶ So, we run them one at a time



Multiprogramming

Multiprogramming: run multiple processes “at the same time”
▶ A.k.a. multitasking.

Many processes exist simultaneously.

When the OS kernel makes a scheduling decision, it chooses a process to switch to.

When a process is forced to wait (e.g., for an I/O operation to complete), the OS kernel
can switch to a process that is ready to execute.

System resources (CPU and I/O devices) can be more fully utilized than in batch
processing.
▶ Because there are lots of processes to keep them busy!



Throughput and latency

Throughput: work finished per unit of time.

Latency: interval between when a task starts and when it finishes.

Multiprogramming can be advantageous for both throughput and latency.
▶ Although, there is no free lunch: “perfect” utilization of system resources would

require knowledge of the future



Throughput example

Having multiple processes available for scheduling allows the OS kernel to avoid leaving
the CPU idle during I/O operations.

Leaving CPU idle during I/O:

Overlapping process execution and I/O:



Latency example

Processes A and B start at about the same time. A will require 8 seconds and process B
will require 2 seconds.

Option 1: run them one at a time. Average latency is 9s.

Option 2: switch between them. Average latency is 7s.



Processes: kernel perspective



Kernel’s view of a process

State associated with a process
▶ Its address space (the memory it’s using and the contents of that memory)

▶ Code, data
▶ Its stack

▶ This is just memory in the address space pointed to by the stack pointer
▶ Program counter

▶ Which instruction will execute next
▶ Values of CPU registers

▶ If the process is currently suspended (e.g., waiting for I/O to complete), these are
needed when the OS kernel eventually resumes execution of the process

▶ Resources used (files, terminal, network connections, etc.)



Process address space

Kernel memory

User stack
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Process’s view of itself

To code executing with in a process:
▶ It only sees memory in its own address space
▶ As far as it knows, it has its own CPU

▶ The proceess doesn’t know or care that the OS kernel is actually switching processes
▶ It has its own set of open files

Virtual memory: an address within a process has no meaning to other processes.
▶ Address 0xdfba260 in process A is a different memory location that address

0xdfba260 in process B

Each process has its own isolated collection of resources. It’s as though each process has
its own virtual computer system.



Identifying processes
The OS kernel will maintain a unique identifier naming the process. On Unix/Linux,
each process has a process id (“PID”.)



Interprocess communication

Processes are isolated from each other (by default, their resources are private.)

Sometimes we would like one process to be able to interact with another. Many
mechanisms exist for this purpose:
▶ files (one process writes, another reads)
▶ shared memory (memory regions in two processes map to the same physical

memory)
▶ communication channels (pipes, sockets)
▶ signals (one process sends a signal to another)

Some of these mechanisms require some form of synchronization to use correctly. (E.g.,
shared memory, files.)

Some mechanisms are inherently sequential (pipes, sockets).



Process Control Block (PCB)

In the kernel, each process is represented by an instance of a data type known as the
“Process Control Block” (PCB).

On Linux, this is the struct task_struct data type.



Linux task_struct data type

struct task_struct {
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
*/

struct thread_info thread_info;
/* -1 unrunnable, 0 runnable, >0 stopped: */
volatile long state;
void *stack;
refcount_t usage;
/* Per task flags (PF_*), defined further below: */
unsigned int flags;
unsigned int ptrace;

#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;

#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */
unsigned int cpu;

#endif



Linux task_struct data type
unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
/*
* recent_used_cpu is initially set as the last CPU used by a task
* that wakes affine another task. Waker/wakee relationships can
* push tasks around a CPU where each wakeup moves to the next one.
* Tracking a recently used CPU allows a quick search for a recently
* used CPU that may be idle.
*/

int recent_used_cpu;
int wake_cpu;

#endif
int on_rq;
int prio;
int static_prio;
int normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;

/* ...etc, lots more fields... */



Some interesting things in Linux task_struct

struct mm_struct *mm;

Data structure representing the virtual address space (which memory regions exist, what
is mapped in each region, etc.)

struct files_struct *files;

Table of open files.

volatile long state;

Process state.



Process states

At any given point, a process is in one of the following states:

Running The process is currently executing instructions (i.e., it’s scheduled on a
CPU.)

Ready The process is ready to run, but isn’t currently executing on a CPU. When
the OS kernel makes a scheduling decision, it chooses a Ready process.)

Waiting The process is suspended while it waits for an event to occur (usually the
completion of an I/O request.)



Viewing processes and their states

The Unix/Linux ps and top programs list processes, and have a STAT or S column to
indicate the state of each process.
$ ps --sort=-pcpu auxw
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
daveho 13036 98.0 0.5 219628 190116 pts/3 R+ 10:55 0:00 /usr/lib/gcc/x86_64-linux
root 1196 1.2 0.6 1303036 224240 tty7 Ssl+ 05:41 3:52 /usr/lib/xorg/Xorg -core
daveho 2296 1.2 1.6 3617808 534216 ? Sl 05:43 3:51 /usr/lib/firefox/firefox
daveho 13025 1.0 0.0 10192 4092 pts/3 S+ 10:55 0:00 make -j 4
daveho 7818 0.8 2.6 13001900 855908 ? Sl 06:50 2:05 java -jar /home/daveho/So
daveho 12243 0.6 0.7 2574280 232020 ? SLl 10:49 0:02 gimp-2.10 /home/daveho/gi
daveho 2207 0.5 0.5 2404980 176868 ? SLl 05:42 1:50 /usr/bin/python3 /usr/bin
daveho 2554 0.4 0.4 2688348 158436 ? Sl 05:43 1:30 /usr/lib/firefox/firefox-
daveho 1505 0.3 0.0 387636 9656 ? Ssl 05:41 1:01 /usr/bin/ibus-daemon --da
daveho 12827 0.3 0.0 117844 7928 ? Ssl 10:53 0:00 /usr/bin/speech-dispatche
daveho 2140 0.2 0.1 485068 52432 ? Sl 05:42 0:45 gvim -f
daveho 2285 0.2 0.1 408724 52240 ? Sl 05:42 0:39 mintreport-tray
daveho 11885 0.2 0.4 2505204 157196 ? Sl 10:39 0:02 /usr/lib/firefox/firefox-
daveho 1593 0.1 0.0 163608 7260 ? Sl 05:41 0:18 /usr/libexec/ibus-engine-



Process lifecycle



Tracking process states
The OS kernel will often need to find a process that is in a particular state. For example,
find a process that is in the Ready state when making a scheduling decision.

Could search list of all processes
▶ Inefficient, especially if there is a large number of processes

Better idea: different lists for processes in different states
▶ Ready queue: list of all processes in the Ready state

For processes in Waiting state, have a separate queue per event type
▶ E.g., a queue of processes waiting on disk I/O

Process PCBs are moved from queue to queue when the state changes.

Running state: don’t really need a queue, since (at least on a single-processor system)
there can be only one process in this state.



Process queues



Scheduling
When a scheduling decision is made, which Ready process should the kernel choose?

Goals:
▶ fairly allocate CPU time to processes
▶ avoid any expensive operations (e.g., don’t search the entire ready queue)

Pintos default scheduler: FIFO
▶ Running → Ready (suspend process): put process at tail of ready queue
▶ Ready → Running (resume process): remove process at head of ready queue

We’ll have a lot more to discuss regarding scheduling in the near future.

Note that if there is a special “idle” process that never waits, then there is always a
process available to schedule.
▶ The idle process should only be scheduled if there is not another process in the

Ready state



Preemption

Preemption means that every time the OS kernel regains control of the CPU, it could
make a scheduling decision.

The interval timer device ensures that the OS kernel has the opportunity to make
scheduling decisions at regular intervals.

Any exception (hardware interrupt, fault, system call, etc.) is an opportunity for the
kernel to make a scheduling decision.

A process (while running in kernel mode) could also voluntarily offer to find a different
process to run (sched_yield().)



Context switch

Switching from one process to another is called a context switch.

General idea:
▶ save context of process being suspended
▶ restore context of process being resumed

“Context” primarily means the values of CPU registers, but also includes
▶ the process’s virtual address space
▶ floating point registers (and other special registers such as the condition code

register)

Context is often saved in the Process Control Block.
▶ It could also be saved on the process’s kernel stack



Context switch



Context switch cost

A context switch has a non-zero cost.

Changing address spaces will generally require the TLB to be flushed. (We don’t want
“stale” mappings of the old process’s virtual pages.)

Changing address spaces will also usually incur a significant number of cache misses
(since process’s generally don’t share memory, so the switched-to process’s data will
need to be loaded into the cache.)

Saving and restoring floating point registers can be expensive.

Trade-off: making scheduling decisions more frequently means that processes wait less
to use the CPU, but means more overhead due to context switches.



Processes: user (program) perspective



Creating a process

Important system call: allow the creation of a child process

Each process has a parent
▶ Child process will run with user identity of parent, so has same privileges, can

access same resources
▶ Point to ponder: how is the first process created?

▶ On Unix/Linux, process ID 1 is the “init” process
▶ Is ultimately responsible for creating all other processes



Creating a process: Windows

On Windows, the CreateProcess system call creates a child process:

BOOL CreateProcess(char *prog, char *args, /* various optional arguments */ );

1. Create PCB for new process
2. Create new address space
3. Arrange for code and data of specified executable to be mapped into the new

address space
4. Copy args (command line arguments) into the new address space
5. Prepare initial context

▶ Make it look like the process was interrupted just before executing the first instruction
at the program’s entry point

6. Put PCB on the ready queue

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa


Creating a process: Unix/Linux

In Unix/Linux, the fork() system call creates a child process:

pid_t fork(void);

1. Create PCB for new process
2. Create a copy of the parent’s address space
3. Duplicate parent process’s open files
4. Copy parent process’s context
5. Put PCB on the ready queue

In the parent process, fork() returns the child’s process ID.

In the child process, fork() returns 0.

https://linux.die.net/man/2/fork


fork() example program

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{

char *name = argv[0];
int child_pid = fork();
if (child_pid == 0) {

printf("Child of %s is %d\n", name, getpid());
return 0;

} else {
printf("My child is %d\n", child_pid);
return 0;

}
}



Running the example program

$ make fork_example
cc fork_example.c -o fork_example
$ ./fork_example
My child is 6784
Child of ./fork_example is 6784



Returning a different return value in each process

Because a child process created by fork() runs in an address space identical to its
parent, the address of the instruction fork() returns to is the same in each process.

The only difference in the context for returning to parent vs. returning to child is what
value is stored in the CPU register storing the return value (%eax for 32-bit x86):
▶ In the parent process, the return value register stores the child’s process ID
▶ In the child process, the return value register stores 0



The child runs asynchronously

Once the child process is added to the ready queue, it competes for CPU time the same
as any other process. So, the execution of the child process is not synchronized with the
execution of the parent process.

For the example program, the outputs

My child is 6784
Child of ./fork_example is 6784

and

Child of ./fork_example is 6784
My child is 6784

are both possible.



Starting a different program

Having the child run the same program as the parent is sometimes useful.

However, most of the time the goal is for the child process to run a different program.

int execv(char *prog, char *argv[]);
int execve(const char *filename, char *const argv[], char *const envp[]);

1. Create new address space (replacing the current one)
2. Map code and data of executable program into the new address space
3. Set up context to begin execution at the new program’s entry point
4. Place PCB back in the ready queue

Note: these functions only return if an error occurs and the new program can’t be
executed.

Also note: the Pintos exec is like fork followed by Unix/Linux exec.



When fork() is useful

Even though the common case of following fork() with exec() is useful, there are
important situations where fork() alone is quite useful.

The child process

1. Inherits resources from the parent (including open files, network connections, etc.)
2. The child can make any adjustments to the state it inherited from the parent that

it needs to
▶ No special arguments for fork() are needed to do things like set the child process’s

standard input, standard output, etc.
▶ Contrast: Windows CreateProcess(), lots of complicated optional arguments



Network server

for (;;) {
int fd = accept(ssock, NULL, NULL);
pid_t child = fork();
if (child == 0) {

chat_with_client(fd);
exit(0);

}
close(fd);

}



Shell program
minish.c (excerpt):
pid_t pid; char **av;
void doexec () {

execvp (av[0], av);
perror (av[0]);
exit (1);

}

/* ... main loop: */
for (;;) {

parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:

perror ("fork"); break;
case 0:

doexec ();
default:

waitpid (pid, NULL, 0); break;
}

}

https://jhuopsys.github.io/spring2024/lectures/lec03/minish.c


Shell program

bash$ make minish
cc minish.c -o minish
bash$ ./minish
$ /bin/echo Hello
Hello
$ gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.



Shell program with I/O redirection
redirsh.c (excerpt):

void doexec (void) {
int fd;
if (infile) {/* non-NULL for "command < infile" */

if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {

dup2 (fd, 0); // <---- change standard input in child
close (fd);

}
}
/*...do same for outfile→fd 1, errfile→fd 2...*/
execvp (av[0], av);
perror (av[0]);
exit (1);

}

https://jhuopsys.github.io/spring2024/lectures/lec03/minish.c


Shell program with I/O redirection

bash$ make redirsh
cc redirsh.c -o redirsh
bash$ ./redirsh
$ ls > files
$ grep sh < files
minish
minish.c
redirsh
redirsh.c



Ending a process

Windows:

void ExitProcess(UINT uExitCode);

Linux/Unix:

void _exit(int status);

1. Terminate all threads (much more to say about this next time)
2. Close all open files
3. Tear down address space

▶ Release all memory used by process
4. Notify parent process of child’s exit status
5. (Eventually) destroy PCB

The OS kernel is responsible for deallocating all resources used by a process.



Wait for child to finish

Windows:

DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds);

Linux/Unix:

pid_t wait(int *wstatus);

Parent process is suspended until the child process exits.

Zombie process: child process that has exited, but the parent hasn’t attempted to wait
for the child. The OS kernel is obligated to preserve a record of the child process (and
not reuse its PID) until the parent has waited for it.



Next time

Threads and thread scheduling!
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